

US010580337B2

(12) United States Patent Chaji et al.

(54) SYSTEM AND METHODS FOR EXTRACTION OF THRESHOLD AND MOBILITY PARAMETERS IN AMOLED DISPLAYS

(71) Applicant: Ignis Innovation Inc., Waterloo (CA)

(72) Inventors: Gholamreza Chaji, Waterloo (CA); Yaser Azizi, Waterloo (CA)

(73) Assignee: Ignis Innovation Inc., Waterloo (CA)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 16/175,906

(22) Filed: Oct. 31, 2018

(65) **Prior Publication Data**

US 2019/0066557 A1 Feb. 28, 2019

Related U.S. Application Data

- (63) Continuation of application No. 15/708,361, filed on Sep. 19, 2017, now Pat. No. 10,127,846, which is a (Continued)
- (51) **Int. Cl. G09G 3/00** (2006.01) **G09G 3/3233** (2016.01)
 (Continued)
- (52) **U.S. Cl.**CPC *G09G 3/006* (2013.01); *G01R 19/0092* (2013.01); *G09G 3/3233* (2013.01); (Continued)
- (58) Field of Classification Search

None

See application file for complete search history.

(10) Patent No.: US 10,580,337 B2

(45) **Date of Patent:** Mar. 3, 2020

(56) References Cited

U.S. PATENT DOCUMENTS

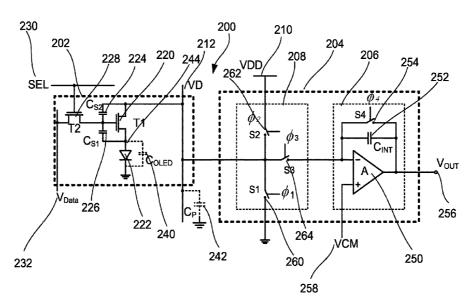
3,506,851 A 4/1970 Polkinghorn 3,774,055 A 11/1973 Bapat (Continued)

FOREIGN PATENT DOCUMENTS

CA 1 294 034 1/1992 CA 2 109 951 11/1992 (Continued)

OTHER PUBLICATIONS

Ahnood: "Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements"; dated Aug. 2009.


(Continued)

Primary Examiner — Nicholas J Lee (74) Attorney, Agent, or Firm — Stratford Managers Corporation

(57) ABSTRACT

A system to improve the extraction of transistor and OLED parameters in an AMOLED display includes a pixel circuit having an organic light emitting device, a drive device to provide a programmable drive current to the light emitting device, a programming input to provide the programming signal, and a storage device to store the programming signal. A charge-pump amplifier has a current input and a voltage output. The charge-pump amplifier includes an operational amplifier in negative feedback configuration. The feedback is provided by a capacitor connected between the output and the inverting input of the operational amplifier. A commonmode voltage source drives the non-inverting input of the operational amplifier. An electronic switch is coupled across the capacitor to reset the capacitor. A switch module including the input is coupled to the output of the pixel circuit and an output is coupled to the input of the charge-pump amplifier.

16 Claims, 12 Drawing Sheets

Related U.S. Application Data

continuation of application No. 15/420,503, filed on Jan. 31, 2017, now Pat. No. 9,799,248, which is a continuation of application No. 15/154,445, filed on May 13, 2016, now Pat. No. 9,589,490, which is a continuation of application No. 14/680,554, filed on Apr. 7, 2015, now Pat. No. 9,355,584, which is a continuation of application No. 13/950,795, filed on Jul. 25, 2013, now Pat. No. 9,093,029, which is a continuation of application No. 13/112,468, filed on May 20, 2011, now Pat. No. 8,576,217.

(51) Int. Cl. G09G 3/3291 (2016.01) G09G 3/3258 (2016.01) G01R 19/00 (2006.01) G09G 3/3266 (2016.01) H03F 3/217 (2006.01)

(52) U.S. Cl.

(56) References Cited

U.S. PATENT DOCUMENTS

4,090,096 A 5/1978 Nagami 4,160,934 A 7/1979 Kirsch 4,295,091 A 10/1981 Ponkala 4,354,162 A 10/1982 Wright 4,943,956 A 7/1990 Noro 4,996,523 A 2/1991 Bell 5,153,420 A 10/1992 Hack 5,198,803 A 3/1993 Shie 5,204,661 A 4/1993 Hack 5,266,515 A 11/1993 Robb 5,489,918 A 2/1996 Mosier 5,498,880 A 3/1996 Lee 5,557,342 A 9/1996 Eto 5,561,381 A 10/1996 Jenkins 5.572,444 A 11/1996 Lentz 5,589,847 A 12/1996 Lewis 5,619,033 A 4/1997Weisfield 5,648,276 A 7/1997 Hara 5,670,973 A 9/1997 Bassetti 5,684,365 A 11/1997 Tang 5,691,783 A 11/1997 Numao 5,714,968 A 2/1998 Ikeda 5,723,950 A 3/1998 Wei 5,744,824 A 4/1998 Kousai 5,745,660 A 4/1998 Kolpatzik 5,748,160 A 5/1998 Shieh 5,815,303 A 9/1998 Berlin 5,870,071 A 2/1999 Kawahata 5,874,803 A 2/1999 Garbuzov 3/1999 5,880,582 A Sawada 5,903,248 A 5/1999 Irwin 5,917,280 A 6/1999 Burrows 5.923,794 A 7/1999 McGrath 5.945,972 A 8/1999 Okumura 5.949.398 A 9/1999 Kim 5,952,789 A 9/1999 Stewart

9/1999 5.952.991 A Akiyama 5.982,104 A 11/1999 Sasaki 11/1999 5,990,629 A Yamada 6.023.259 A 2/2000 Howard 6,069,365 A 5/2000 Chow 6,091,203 A 7/2000 Kawashima 6,097,360 A 8/2000 Holloman 6,144,222 A 11/2000 Но 6,177,915 B1 1/2001 Beeteson 6.229,506 B1 5/2001 Dawson 6,229,508 B1 5/2001 Kane 6,246,180 B1 6/2001 Nishigaki 6.252,248 B1 6/2001 Sano 6,259,424 B1 7/2001 Kurogane 6,262,589 B1 7/2001 Tamukai 6,271,825 B1 8/2001 Greene 6,288,696 B1 9/2001 Holloman 6,304,039 B1 10/2001 Appelberg 6,307,322 B1 10/2001 Dawson 6,310,962 B1 10/2001 Chung 11/2001 6.320.325 B1 Cok 6,323,631 B1 11/2001 Juang 6,329,971 B2 12/2001 McKnight 6,356,029 B1 3/2002 Hunter 6,373,454 B1 4/2002 Knapp 6,377,237 B1 4/2002 Sojourner 6,392,617 B1 5/2002 Gleason 6,404,139 B1 6/2002 Sasaki et al. 6,414,661 B1 7/2002 Shen 7/2002 6,417,825 B1 Stewart 6,433,488 B1 8/2002 Bu 6,437,106 B1 6,445,369 B1 8/2002 Stoner 9/2002 Yang 6,475,845 B2 11/2002 Kimura 6,501,098 B2 12/2002 Yamazaki 6,501,466 B1 12/2002 Yamagishi 6,518,962 B2 2/2003 Kimura 6.522.315 B2 2/2003 Ozawa 6,525,683 B1 2/2003 Gu Kawashima 6.531.827 B2 3/2003 6,541,921 B1 4/2003 Luciano, Jr. 6,542,138 B1 4/2003 Shannon 6,555,420 B1 4/2003 Yamazaki 6,577,302 B2 6/2003 Hunter 6,580,408 B1 6/2003 Bae 6,580,657 B2 6/2003 Sanford 6,583,398 B2 6/2003 Harkin 6/2003 6,583,775 B1 Sekiya 6,594,606 B2 7/2003 Everitt 6,618,030 B2 9/2003 Kane 6,639,244 B1 10/2003 Yamazaki 6,668,645 B1 12/2003 Gilmour 6,677,713 B1 1/2004 Sung 6,680,580 B1 Sung 1/2004 6.687.266 B1 2/2004 Ma 6,690,000 B1 2/2004 Muramatsu 6,690,344 B1 2/2004 Takeuchi 6,693,388 B2 2/2004 Oomura 6,693,610 B2 2/2004 Shannon 6,697,057 B2 2/2004 Koyama 6,720,942 B2 4/2004 Lee 6,724,151 B2 4/2004 Yoo 6,734,636 B2 5/2004 Sanford 6,738,034 B2 5/2004 Kaneko 6.738.035 B1 5/2004 Fan 6.753.655 B2 6/2004 Shih 6,753,834 B2 6/2004 Mikami 6,756,741 B2 6/2004 Li 6,756,952 B1 6/2004 Decaux 6,756,958 B2 6/2004 Furuhashi 6,765,549 B1 7/2004 Yamakazi 6,771,028 B1 8/2004 Winters 6,777,712 B2 8/2004 Sanford 6.777.888 B2 8/2004 Kondo 6,781,306 B2 8/2004 Park 6,781,567 B2 8/2004 Kimura 6,806,497 B2 10/2004 Jo 6,806,638 B2 10/2004 Lih et al 6,806,857 B2 10/2004 Sempel

(56)		Referen	ces Cited		7,569,849 B2		Nathan
	U.S	S. PATENT	DOCUMENTS		7,576,718 B2 7,580,012 B2		Miyazawa Kim
	0	,, 1111 L1 (1	BOCOMENTO		7,589,707 B2		
	6,809,706 B2		Shimoda		7,605,792 B2		
	6,815,975 B2				7,609,239 B2 7,619,594 B2		
	6,828,950 B2 6,853,371 B2		Koyama Miyajima		7,619,597 B2		
	6,859,193 B1		Yumoto		7,633,470 B2		
	6,873,117 B2	3/2005	Ishizuka		7,656,370 B2		Schneider
	6,876,346 B2				7,675,485 B2 7,800,558 B2		Steer Routley
	6,885,356 B2 6,900,485 B2		Hashimoto		7,847,764 B2		
	6,900,483 B2				7,859,492 B2		
	6,909,243 B2	6/2005	Inukai		7,868,859 B2		Tomida
	6,909,419 B2		Zavracky		7,876,294 B2 7,924,249 B2		
	6,911,960 B1 6,911,964 B2		Yokoyama		7,932,883 B2		Klompenhouwer
	6,911,904 B2				7,969,390 B2	6/2011	Yoshida
	6,919,871 B2				7,978,187 B2		Nathan
	6,924,602 B2		Komiya		7,994,712 B2		Sung Nathan
	6,937,215 B2 6,937,220 B2		Lo Kitaura		8,026,876 B2 8,031,180 B2		Miyamoto
	6,940,214 B1		Kuaura Komiya		8,049,420 B2		
	6,943,500 B2		LeChevalier		8,077,123 B2		Naugler, Jr.
	6,947,022 B2		McCartney		8,115,707 B2	2/2012	
	6,954,194 B2		Matsumoto		8,208,084 B2 8,223,177 B2		Nathan
	6,956,547 B2 6,975,142 B2				8,232,939 B2		Nathan
	6,975,332 B2				8,259,044 B2		
	6,995,510 B2	2/2006	Murakami		8,264,431 B2		Bulovic
	6,995,519 B2				8,279,143 B2 8,294,696 B2		
	7,023,408 B2 7,027,015 B2		Chen Booth, Jr.		8,314,783 B2		Sambandan
	7,027,013 B2 7,027,078 B2				8,339,386 B2		
	7,034,793 B2				8,441,206 B2		
	7,038,392 B2				8,493,296 B2 8,581,809 B2		
	7,053,875 B2				8,654,114 B2		Shimizu
	7,057,359 B2 7,061,451 B2		Hung Kimura		9,125,278 B2		
	7,064,733 B2				9,368,063 B2		
	7,071,932 B2				9,418,587 B2		
	7,088,051 B1				9,430,958 B2 9,472,139 B2		J
	7,088,052 B2 7,102,378 B2		Kimura Kuo		9,489,891 B2		
	7,106,285 B2		Naugler		9,489,897 B2		
	7,112,820 B2		Chang et al.		9,502,653 B2		
	7,116,058 B2				9,530,349 B2 9,530,352 B2		
	7,119,493 B2 7,122,835 B1				9,536,460 B2		
	7,127,380 B1				9,536,465 B2		
	7,129,914 B2	10/2006	Knapp		9,589,490 B2	3/2017	
	7,161,566 B2				9,633,597 B2 9,640,112 B2		
	7,164,417 B2 7,193,589 B2		Yoshida		9,721,512 B2	8/2017	
	7,224,332 B2				9,741,279 B2	8/2017	
	7,227,519 B1		Kawase		9,741,282 B2 9,761,170 B2	8/2017 9/2017	Giannikouris
	7,245,277 B2 7,246,912 B2		Ishizuka		9,773,439 B2	9/2017	
	7,248,236 B2		Nathan		9,773,441 B2		
	7,262,753 B2		Tanghe		9,786,209 B2	10/2017	
	7,274,363 B2	9/2007	Ishizuka		01/0002703 A1		Koyama
	7,310,092 B2		Imamura		01/0009283 A1 01/0024181 A1		Kubota
	7,315,295 B2 7,321,348 B2		Kimura Cok		01/0024186 A1		
	7,339,560 B2				01/0026257 A1		
	7,355,574 B1	4/2008	Leon		01/0030323 A1		
	7,358,941 B2				01/0035863 A1 01/0038367 A1		
	7,368,868 B2 7,397,485 B2		Sakamoto Miller		01/0030307 A1 01/0040541 A1	11/2001	
	7,411,571 B2				01/0043173 A1		Troutman
	7,414,600 B2	8/2008	Nathan		01/0045929 A1		
	7,423,617 B2		Giraldo		01/0052606 A1		
	7,453,054 B2 7,474,285 B2		Lee Kimura		01/0052940 A1 02/0000576 A1		Hagihara Inukai
	7,474,285 B2 7,502,000 B2				02/0000376 A1 002/0011796 A1		Koyama
	7,528,812 B2				002/0011790 A1		Kimura
	7,535,449 B2	5/2009	Miyazawa	20	02/0012057 A1	1/2002	Kimura
	7,554,512 B2	6/2009	Steer	20	002/0014851 A1	2/2002	Tai

U.S. PATENT DOCUMENTS	(56)	Referen	ces Cited	2004/0178743		9/2004	
2002-0018034	11.0	DATENIT	DOCUMENTS				
2002-003-0150	0.5	. FAILINI	DOCUMENTS				
2002-0047565 Al 4/2902 March 2004/0239596 Al 12/2004 Tobit 2002-002608 Al 5/2002 Macth 2004/02364 Al 12/2004 Tobit 2002-0026084 Al 17/2002 Sanford 2004/0253733 Al 12/2004 Kawashima 2004/0253733 Al 12/2004 Kawashima 2004/0253735 Al 12/2004 Kawashima 2004/0253735 Al 12/2004 Kawashima 2004/0253735 Al 12/2004 Maugher 2002/0101172 Al 8/2002 Bu 2004/0253735 Al 12/2004 Maugher 2002/0101727 Al 8/2002 Sanford 2004/0253735 Al 12/2004 Maugher 2002/0101727 Al 8/2002 Sanford 2004/0253445 Al 12/2004 Maugher 2002/0101737 Al 8/2002 Reda 2004/0253445 Al 12/2004 Endeath 2004/0253445 Al 12/2004 Endeath 2002/0101737 Al 12/2004 Maugher 2002/01018376 Al 12/2004 Maugher 2002/01018376 Al 12/2002 Camain 2004/0253445 Al 12/2006 Endeath 2002/01018376 Al 12/2002 Aramin 2005/0007157 Al 11/2005 Camain 2005/0107507 Al 11/2005 Camain 2005/0	2002/0018034 A1	2/2002	Ohki				
2002-0005308	2002/0030190 A1						
2002.00667134 Al 6.2902 Kawashima 2004.0025398 Al 122.004 Concept 2002.0064613 7.2902 Sanbord 2004.00257353 Al 122.004 Mawshima 2002.001.00270 Al 8.2902 Simura 2004.0025735 Al 122.004 Mawshima 2002.001.00270 Al 8.2902 Simura 2004.0025735 Al 122.004 Mawshima 2002.002.002.002.002.002.00363 Al 2.2002 Simura 2004.0025345 Al 122.004 Mawshima 2002.002.003637 Al 12.005 Mawshima 2002.003637 Al 12.005 Mawshima 2005.00657 Al 12.005							
2002/0101172 A1 8.2002 Nambran 2004/0257355 A1 12/000 Imamura 2002/0101172 A1 8.2002 Simura 2004/0257355 A1 12/000 Imamura 2002/0101172 A1 8.2002 Simura 2004/02673455 A1 12/000 Hautori 2002/0101272 A1 8.2002 Simura 2004/0267344 A1 12/000 Hautori 2002/0101272 A1 8.2002 Simura 2004/0267344 A1 12/000 Hautori 2002/01015876 A1 12/000 Recha 2004/0267344 A1 12/000 Imamura 2004/0267344 A1 12/000 Imamura 2002/0105876 A1 12/000 March 2002/0105876 A1 12/000 Arami 2004/0267344 A1 12/000 March 2002/0105874 A1 12/000 Arami 2005/0007355 A1 12/000 March 2002/0105874 A1 12/000 Arami 2005/0007355 A1 12/000 March 2002/0105874 A1 12/000 Everit 2005/0007355 A1 12/000 Kasia 2002/0105874 A1 12/000 Everit 2005/0007355 A1 12/000 Kasia 2002/0105874 A1 12/000 Everit 2005/0007360 A1 12/000 Kasia 2002/0105874 A1 12/000 Kimura 2005/0007368 A1 22/000 Chechabugh 2002/0105874 A1 22/000 Kimura 2005/0007368 A1 22/000 Chechabugh 2002/0105874 A1 22/000 Chechabugh 2002/0105875 A1 22/000 Chechabugh 2002/0105875 A1 22/000 Chechabugh 2002/0105875 A1 22/000 Chechabugh 2002/0105875 A1 22/000							
2002-0101152 A1 82-002 Birmura 2004-0257353 A1 122-004 Namura 2002-0101172 A1 82-002 Ba 2004-0253437 A1 122-004 Anugler 2002-0101727 A1 82-002 Constal 2004-0253437 A1 122-004 Enturina 2004-0253445 A1 122-004 Enturina 2002-0125368 A1 22-002 Reda 2004-025345 A1 122-004 Enturina 2002-0158666 A1 102-002 Azami 2005-007355 A1 122-005 Enturina 2002-0158665 A1 122-002 Enturina 2005-007355 A1 122-002 Enturina 2002-0158665 A1 122-002 Everiti 2005-007357 A1 12003 Yamashina 2002-0165471 A1 112-002 Everiti 2005-007357 A1 12003 Sansi 2002-0165474 A1 112-002 Everiti 2005-007357 A1 12003 Everiti 2005-007357 A1 2003 Everiti 2002-0165476 A1 122-002 Everiti 2005-007367 A1 22-002 Everiti 2002-0165476 A1 122-002 Everiti 2005-007367 A1 22-002 Everiti 2002-0165476 A1 22-002 Everiti 2005-0065780 A1 32-002 Everiti 2002-0165476 A1 22-002 Everiti 2005-0065780 A1 32-003 Everiti 2005-0065780 A1 32-00							
2002-0105279 Al 8-2002 Simura 2004-026437 Al 1 12-2004 Halfori 2002-0107272 Al 8-2002 Osada 2004-026444 Al 12-2004 Kimura 2002-0105873 Al 92-2002 Recka 2004-0263445 Al 12-2004 Inakai 2002-01058873 Al 10-2002 Scani 2005-0007355 Al 12-2005 Minara 2005-0007357 Al 12-2005 Minara 2002-0105474 Al 11/2002 Everitt 2005-0007357 Al 12-2005 Minara 2002-0105474 Al 11/2002 Everitt 2005-000750 Al 12-2005 Fiver 2002-0105476 Al 12-2005 Kondo 2002-0105476 Al 12-2005 Kondo 2002-0105476 Al 12-2002 Koyama 2005-0007439 Al 2-2005 Kondo 2002-010872 Al 12-2002 Kimura 2005-0007484 Al 2-2005 Sondo 2002-010872 Al 12-2002 Sveritt 2005-0007484 Al 2-2005 Diefenbaugh 2002-0108274 Al 12-2002 Sveritt 2005-0007484 Al 2-2005 Diefenbaugh 2002-0108274 Al 12-2002 Sveritt 2005-00075975 Al 12-2002 Sveritt 2005-00075975 Al 12-2002 Sveritt 2005-00075977 Al 12-2002 Sveritt 2005-00075977 Al 12-2002 Sveritt 2005-00075977 Al 12-2002 Sveritt 2005-0007597 Al							
2002/01/8587 Al 2002 Rech 2004/026344 Al 12/2004 Imukai 2002/01/8586 Al 10/2002 Rech 2004/026344 Al 12/2004 Imukai 2002/01/8586 Al 10/2002 Rech 2004/026344 Al 12/2005 Rech 2002/01/8586 Al 10/2002 Zarami 2005/0007355 Al 12/2005 Zarami 2005/0007392 Al 12/2005 Sarami 2002/01/6474 Al 11/2002 Everit 2005/00074081 Al 22/2005 Everit 2005/00024081 Al 22/2005 Everit 2005/00057580 Al 3/2005 Everit 2005/0005877 Al 3/2005 Everit 2005/00057580 Al 3/2005 Everit 2005/0005877 Al 3/20							
2002/018578 Al 9/2002 Nomiya 2004/026344 Al 12/2004 Takeuch 2002/018586 Al 10/2003 Xomiya 2005/0007357 Al 12/2005 Mintra 2002/018586 Al 10/2003 Zavracky 2005/0007357 Al 12/2005 Xasasi 2002/016747 Al 11/2005 Everit 2005/0007357 Al 12/2005 Xasasi 2002/016747 Al 11/2005 Everit 2005/0007357 Al 12/2005 Everit 2005/0004081 Al 22/2005 Kuo 2002/016757 Al 11/2005 Everit 2005/0004081 Al 22/2005 Kuo 2002/016875 Al 11/2002 Everit 2005/0004393 Al 22/2005 Kuo 2002/018073 Al 12/2002 Everit 2005/0004393 Al 22/2005 Kuo 2002/018073 Al 12/2002 Everit 2005/00057484 Al 22/2005 Managa 2002/018073 Al 12/2002 Everit 2005/00057484 Al 22/2005 Everit 2005/00057580 Al 22/2005 Everit 2005							
2002/015887 Al 10/2002 Xarmi							
2002/0158666 A1 10/2002 Azami 2005/0007337 A1 12/005 Mura 2002/016747 A1 11/2002 Everit 2005/0007337 A1 12/005 Azamachia 2002/016747 A1 11/2002 Everit 2005/0007392 A1 12/005 Everit 2005/0007392 A1 12/005 Everit 2005/0007408 A1 12/005 Everit 2005/00024081 A1 22/005 Everit 2005/00030267 A1 22/005 Everit 2005/00037484 A1 22/005 Everit 2005/00037484 A1 22/005 Everit 2005/00037484 A1 22/005 Everit 2005/00057484 A1 22/005 Everit 2005/00057484 A1 22/005 Everit 2005/00057484 A1 22/005 Everit 2005/0005790 A1 22/005 Everit 2005/0005827 A1							
2002/0167471 Al 11/2002 Eventry 2005/0007392 Al 1/2005 Eventry 2005/0107650 Al 1/2005 Eventry 2005/0107650 Al 1/2005 Eventry 2005/0104081 Al 2/2005 Eventry 2005/01030267 Al 2/2005 Eventry 2005/01030267 Al 2/2005 Eventry 2005/01057484 Al 2/2005 Eventry 2005/01057784 Al 2/2005 Eventry 2005/0105779 Al 2/2005 Eventry 2005/01058279 Al 2/2005 Eventry 2005/	2002/0158666 A1						
2002/0169474 Al 11/2002 Everit 2005/001/650 Al 12/2005 Everit 2005/001/6975 Al 12/2005 Everit 2005/002/4081 Al 2/2005 Evor 2002/01/6975 Al 11/2002 Everit 2005/002/4981 Al 2/2005 Evor 2002/01/6976 Al 12/2002 Everit 2005/003/267 Al 3/2005 Everit 2005/003/267 Al 3/2005 Everit 2005/005/7580 Al 3/2005 Everit 2005/005/7580 Al 3/2005 Everit 2005/0067970 Al 3/2005 Everit 2005/006							
2002/0169575 Al 11/2002 Everit 2005/002498 Al 22005 Kiondo 2002/01803 Al 12/2002 Kondo 2002/01803 Al 12/2002 Kimura 2005/0030267 Al 22/005 Tanghe 2002/018176 Al 12/2002 Yamzzaki 2005/0057384 Al 3/2005 Tanghe 2002/018176 Al 12/2002 Yamzzaki 2005/0057580 Al 3/2005 Yamzzaki 2005/0067970 Al 3/2005 Yamzzaki 2005/0067970 Al 3/2005 Yamzzaki 2005/0067970 Al 3/2005 Yamzzaki 2002/0190924 Al 12/2002 Sivinski 2005/0067970 Al 3/2005 Kane 2002/0190924 Al 12/2002 Xisma 2005/0068270 Al 3/2005 Kane 2002/0190974 Al 12/2002 Xisma 2005/0068270 Al 3/2005 Kane 2002/0190974 Al 12/2002 Xisma 2005/0068275 Al 3/2005 Kane 2002/0190974 Al 12/2002 Xisma 2005/0068275 Al 3/2005 Kane 2002/0190976 Al 12/2002 Xisma 2005/0068275 Al 3/2005 Kane 2003/0004081 Al 12/2002 Xisma 2005/0083103 Al 4/2005 Kane 2003/0004088 Al 2003 Xisma 2005/0083103 Al 4/2005 Kane 2003/0004088 Al 2003 Xisma 2005/016930 Al 5/2005 Xisma 2005/016920 Al 5/2005 Xisma 2003/0004088 Al 2003/0006825 Al 4/2003 Xisma 2005/016920 Al 5/2005 Xisma 2003/0004081 Al 4/2003 Xisma 2005/0169209 Al 6/2005 Sisma 2003/0006831 Al 4/2003 Xisma 2005/0169209 Al 6/2005 Sisma 2003/0006831 Al 4/2003 Xisma 2005/0169209 Al 6/2005 Sisma 2003/0006881 Al 4/2005 Xisma 2005/0169209 Al Al 4/2005 Xisma 2005/0169209 Al 4/2005 Xisma 2005/016							
2002/1018/369 Al 12/2002 Koyama 2005/0024789 Al 2/2005 Kondo 2002/1018/1276 Al 12/2002 Yamazaki 2005/005/3784 Al 3/2005 Tanghe 2002/018/1276 Al 12/2002 Everiti 2005/005/3784 Al 3/2005 Tanghe 2002/018/345 Al 12/2002 Everiti 2005/005/3780 Al 3/2005 Tanghe 2002/018/345 Al 12/2002 Swinski 2005/006/970 Al 3/2005 Tanghe 2002/019/39/4 Al 12/2002 Asana 2005/006/970 Al 3/2005 Kane 2002/019/39/6 Al 12/2002 Swinski 2005/006/8270 Al 3/2005 Kane 2002/019/39/6 Al 12/2002 Swinski 2005/006/8270 Al 3/2005 Kane 2002/019/39/6 Al 12/2002 Sanford 2005/007/3264 Al 4/2005 Kane 2003/003/003/603 Al 2/2003 Sminoda 2005/008/3254 Al 4/2005 Kane 2003/003/003/803 Al 2/2003 Sminoda 2005/008/303 Al 4/2005 Kane 2003/003/003/803 Al 2/2003 Sminoda 2005/008/303 Al 4/2005 Kane 2003/003/003/803 Al 3/2003 Kimura 2005/011/402 Al 5/2005 Kimura 2005/011/402 Al 5/2005 Kimura 2005/01/4020 Al 5/2005 Kimu							
2002/01/81276 Al 12/2002 Yamazaki 2005/005/7884 Al 3/2005 Namaro 2002/01/86214 Al 12/2002 Everiti 2005/005/7890 Al 3/2005 Libsch 2002/01/9024 Al 12/2002 Sivinski 2005/006/7970 Al 3/2005 Libsch 2002/01/9071 Al 12/2002 Nakamura 2005/006/8270 Al 3/2005 Kane 2002/01/9976 Al 12/2002 Nakamura 2005/006/8270 Al 3/2005 Kane 2002/01/9976 Al 12/2002 Sanford 2005/00/83270 Al 3/2005 Kane 2002/01/9976 Al 12/2002 Sanford 2005/00/83273 Al 4/2005 Maximura 2005/00/83233 Al 4/2005 Maximura 2005/00/83033 Al 4/2005 Maximura 2005/00/83033 Al 4/2005 Maximura 2005/01/90/8078 Al 3/2003 Kimura 2005/01/90/8078 Al 6/2005 Mindolf 2005/00/90/8078 Al 4/2003 Kimura 2005/01/90/808 Al 6/2005 Mindolf 2005/01/90/90/808 Al 6/2005 Mindolf 2005/01/90/90/90/90/90/90/90/90/90/90/90/90/90/							
2003-00183945 Al 12.2002 Everitt 2005/0057580 Al 3.2005 Yamano 2002-0186214 Al 12.2002 Sivinski 2005/0067971 Al 3.2005 Kane 2002-0199074 Al 12.2002 Asano 2005/0068727 Al 3.2005 Awakura 2002-0199076 Al 12.2002 Kim 2005/0068275 Al 3.2005 Awakura 2002-0199076 Al 12.2002 Kim 2005/0068275 Al 3.2005 Awakura 2002-0199076 Al 12.2002 Kim 2005/0078276 Al 2.2005 Awakura 2003-00080214 Al 12.2005 Comura 2005/0083323 Al 4.2005 Suzuki 2003-0003006038 Al 2.2003 Botoh 2005/0108331 Al 4.2005 Suzuki 2003-00040088 Al 3.2003 Botoh 2005/0108331 Al 5.2005 Shih 2003-00030602524 Al 4.2003 Simura 2005/010820 Al 5.2005 Shih 2003-0005826 Al 3.2003 Bertram 2005/0110420 Al 5.2005 Shih 2003-0005803 Al 4.2005 Simura 2005/0104059 Al 5.2005 Chang 2003-0005803 Al 4.2003 Kimura 2005/0104059 Al 5.2005 Chang 2003-0005803 Al 4.2003 Kimura 2005/01040610 Al 6.2005 Smith 2003-0006084 Al 4.2003 Kimura 2005/0105831 Al 7.2005 Sakamoto 2003-0016084 Al 5.2003 Kimura 2005/010584 Al 7.2005 Sakamoto 2003-0016084 Al 7.2003 Kimura 2005/010584 Al 7.2005 Sakamoto 2003-0016084 Al 7.2005 Sakamoto 2003-0016084 Al 7.2005 Sakamoto 2003-0016084 Al 7.2005 Sakamoto 2003-0016084 Al 7.2005 Sakamoto 2003-0016087 Al 7.2005 Sakamoto 20							
2002/0186214 A 12/2002 Sirvinski 2005/0067970 AI 3/2005 Libsch 2002/019971 AI 12/2002 Nakamura 2005/0068270 AI 3/2005 American 2002/019968 AI 12/2002 Nakamura 2005/0068270 AI 3/2005 American 2002/019968 AI 12/2002 Sanford 2005/0078264 AI 4/2005 American 2003/0078264 AI 4/2005 American 2003/0078264 AI 4/2005 American 2003/0078083 AI 1/2003 Shimoda 2005/0088323 AI 4/2005 Suzuki 2003/003/006303 AI 2/2003 Shimoda 2005/0088333 AI 4/2005 Suzuki 2003/003/005826 AI 3/2003 Shimoda 2005/0088333 AI 4/2005 Smimoda 2005/0088323 AI 4/2005 Smimoda 2005/0088323 AI 4/2005 Smimoda 2005/0018087 AI 5/2005 Smimoda 2003/0078264 AI 4/2003 Smimoda 2005/0110807 AI 5/2005 Smimoda 2003/0078264 AI 4/2003 Smimoda 2005/0110807 AI 5/2005 Smimoda 2003/0078224 AI 4/2003 Smimoda 2005/0110807 AI 5/2005 Smimoda 2003/0078224 AI 4/2003 Smimoda 2005/0110807 AI 5/2005 Smimoda 2003/0078224 AI 4/2003 Smimoda 2005/0110807 AI 5/2005 Smimoda 2003/007824 AI 4/2003 Smimoda 2003/01104588 AI 4/2003 Smimoda 2003/0110458 AI 4/2003 Smimoda 2003/01104589 AI 4/2003 Smimoda 2003/01104589 AI 4/2003 Smimoda 2003/01104589 AI 4/							
2002/0199967 Al 12/2002 Nakamura 2005/0068275 Al 3/2005 Nakamura 2002/0195967 Al 12/2002 Nakamura 2005/0068275 Al 3/2005 Nakamura 2005/0068276 Al 3/2005 Nakamura 2005/0073264 Al 4/2005 Nakamura 2005/0073264 Al 4/2005 Nakamura 2005/0073264 Al 4/2005 Natsumoto 2003/003003603 Al 12/2003 Ommura 2005/0083323 Al 4/2005 Natsumoto 2003/0078088 Al 3/2003 Booth 2005/0108303 Al 4/2005 Natsumoto 2003/0048088 Al 3/2003 Booth 2005/0108303 Al 4/2005 Shih 2003/0078025 Al 3/2003 Sooth 2005/0108203 Al 5/2005 Shih 2003/0078025 Al 3/2003 Bertram 2005/0110420 Al 5/2005 Shih 2003/0078025 Al 3/2003 Simura 2005/0110420 Al 5/2005 Shih 2003/0078028 Al 4/2003 Natura 2005/0110420 Al 5/2005 Shih 2003/007803 Al 4/2003 Natura 2005/0110420 Al 5/2005 Shih 2003/007803 Al 4/2003 Natura 2005/0110450 Al 5/2005 Shih 2003/007803 Al 4/2003 Natura 2005/0110450 Al 6/2005 Smith 2003/0078050 Al 4/2003 Natura 2005/01068416 Al 8/2005 Natura 2005/01068416 Al 8/2005 Natura 2003/0106780 Al 4/2003 Natura 2005/01068416 Al 8/2005 Natura 2003/01067850 Al 4/2003 Natura 2005/01068416 Al 8/2005 Natura 2003/01067850 Al 4/2003 Natura 2005/01068416 Al 8/2005 Natura 2003/01068416 Al 8/2005 Natura 2003/01068416 Al 8/2005 Natura 2003/01068416 Al 8/2005 Natura 2003/01068416 Al 8/2005 Natura 2003/0106850 Al 4/2005 Natura 2005/0106850 Al 8/2005 Natura 2005/0106							
2002/019967				2005/0067971	A1	3/2005	Kane
2002/019908 A 12/2002 Sanford 2005/0073264 A 4/2005 Matsumoto 2003/003/002/013 A 1/2003 Comura 2005/0088103 A 4/2005 Suzuki 2003/003/003/003 A 2/2003 Shimoda 2005/0088103 A 4/2005 Kageyama 2003/003/00889 A 3/2003 Simura 2005/0105031 A 5/2005 Amold 2003/003/00889 A 3/2003 Simura 2005/0110420 A 5/2005 Amold 2003/003/005895 A 3/2003 Simura 2005/0110420 A 5/2005 Amold 2003/0063524 A 4/2003 Simura 2005/0110420 A 6/2005 Simi 2003/0063024 A 4/2003 Simura 2005/0110420 A 6/2005 Simi 2003/0063024 A 4/2003 Sundahl 2005/0140598 A 6/2005 Simi 2003/0067048 A 4/2003 Sundahl 2005/0140598 A 6/2005 Simi 2003/0076048 A 4/2003 Sundahl 2005/0146891 A 7/2005 Simith 2003/0076048 A 4/2003 Sumura 2005/016881 A 7/2005 Sakamoto 2003/00900447 A 5/2003 Simura 2005/016881 A 7/2005 Sakamoto 2003/0107560 A 6/2003 Mimoto 2005/0168416 A 8/2005 Misami 2003/01076048 A 7/2003 Miyazawa 2005/0107606 A 8/2003 Miyazawa 2005/0107606 A 8/2003 Miyazawa 2005/0107606 A 8/2003 Miyazawa 2005/0107606 A 8/2003 Soeth, Jr. 2005/018000 A 8/2005 Simith 2005/0107606 A 8/2003 Soeth, Jr. 2005/018000 A 8/2005 Simith 2003/014/2088 A 7/2003 Selec 2005/012787 A 9/2005 Simith 2003/014/2088 A 7/2003 Selec 2005/012787 A 9/2005 Soeth 2003/0169241 A 9/2003 Selec 2005/021983 A 10/2003 Soaki 2003/0169241 A 9/2003 Selec 2005/021883 A 10/2003 Soaki 2003/0169241 A 9/2003 Selec 2005/0228960 A 9/2005 Soaki 2003/016926 A 10/2003 Soaki 2003/0169241 A 9/2003 Soaki 2003/016926 A 10/2003 Soaki 2003/016926 A 10/2003 Soaki 2003/016926 A 10/2003 Soaki 200							
2003/00/20413 A1 12/003 2006/00813/23 A1 4/2005 Saraki 2003/00/20603 A1 22/003 2003/006/208 A1 22/003 2003/006/208 A1 2/2003 2003/007/208 A1 2/2003 2003/007/208 A1 2/2003 2003/007/208 A1 2/2003							
2003/003603 Al 22003 Shimoda 2005/0108103 Al 4/2005 Sageyama 2003/0043088 Al 3/2003 Shimoda 2005/0110420 Al 5/2005 Amold 2003/0058256 Al 3/2003 Simura 2005/0110420 Al 5/2005 Amold 2003/0058254 Al 4/2003 Simura 2005/0110807 Al 5/2005 Chang 2003/0063624 Al 4/2003 Simura 2005/0110807 Al 6/2005 Simura 2005/0110801 Al 8/2005 Si							
2003/0043088 Al 3/2003 Booth 2005/0105031 Al 5/2005 Shih 2003/0057895 Al 3/2003 Bertram 2005/0110420 Al 5/2005 Arnold 2003/0058226 Al 3/2003 Bertram 2005/0110807 Al 5/2005 Chang 2003/0062524 Al 4/2003 Kimura 2005/0140508 Al 6/2005 Ben-David 2003/006081 Al 4/2003 Kimura 2005/0140508 Al 6/2005 Ben-David 2003/006048 Al 4/2003 Rutherford 2005/0140518 Al 6/2005 Smith 2003/0070648 Al 4/2003 Rutherford 2005/0145891 Al 7/2005 Abe 2003/0090447 Al 5/2003 Kimura 2005/0156831 Al 7/2005 Abe 2003/0090447 Al 5/2003 Kimura 2005/0156831 Al 7/2005 Sakamoto 2003/0107560 Al 6/2003 Kimura 2005/0168416 Al 8/2005 Sakamoto 2003/0107560 Al 6/2003 Kimura 2005/0168416 Al 8/2005 Sakamoto 2003/0112745 Al 7/2003 Mikami 2005/0179626 Al 8/2005 Sakamoto 2003/0122745 Al 7/2003 Mikami 2005/0179626 Al 8/2005 Kimura 2003/0122749 Al 7/2003 Mikami 2005/0179626 Al 8/2005 Kimura 2003/0122749 Al 7/2003 Both, Jr. 2005/0185200 Al 8/2005 Kimura 2003/0122749 Al 7/2003 Both, Jr. 2005/0185200 Al 8/2005 Kimura 2003/014288 Al 7/2003 LeChevalier 2005/0206590 Al 9/2005 Kim 2003/014589 Al 8/2003 LeChevalier 2005/0212787 Al 9/2005 Kim 2003/014589 Al 8/2003 Le Chevalier 2005/0212787 Al 9/2005 Noguchi 2003/015481 Al 1/2005 Cok 2003/0174152 Al 9/2003 Sakamoto 2003/0179626 Al 9/2003 Samord 2005/0226995 Al 1/2005 Cok 2003/0179626 Al 9/2003 Samord 2005/0238852 Al 1/2005 Cok 2003/012563 Al 1/2005 Cok 2003/01256 Al 1/2005 Cok							
2003/0058226 Al 3/2003 Bertram 2005/0110807 Al 5/2005 Ben-David 2003/0062524 4/2003 Kimura 2005/0140508 Al 6/2005 Ben-David 2003/0063081 Al 4/2003 Kimura 2005/01405108 Al 6/2005 Ben-David 2003/0076048 Al 4/2003 Sundahl 2005/01405108 Al 6/2005 Smith 2003/0076048 Al 4/2003 Rutherford 2005/0146810 Al 7/2005 Abe 2003/0090447 Al 5/2003 Kimura 2005/0146810 Al 7/2005 Abe 2003/0090447 Al 5/2003 Kimura 2005/0156831 Al 7/2005 Abe 2003/009047 Al 5/2003 Kimura 2005/0156831 Al 7/2005 Sakamoto 2003/0107560 Al 6/2003 Mikami 2005/0156841 Al 8/2005 Sakamoto 2003/0107560 Al 6/2003 Mikami 2005/0179628 Al 8/2005 Mikami 2003/012745 Al 7/2003 Mikami 2005/0179628 Al 8/2005 Kimura 2003/0122749 Al 7/2003 Bhizuki 2005/0185200 Al 8/2005 Kimura 2003/0122749 Al 7/2003 Bhizuki 2005/020575 Al 9/2005 Kimura 2003/0122813 Al 7/2003 Bhizuki 2005/020575 Al 9/2005 Sasaki 2003/014288 Al 7/2003 Lece 2005/0212787 Al 9/2005 Sasaki 2003/0146897 Al 8/2003 Lece 2005/0212787 Al 9/2005 Sasaki 2003/0151569 Al 8/2003 Lece 2005/0225683 Al 10/2005 Voaguchi 2003/0151561 Al 8/2003 LeChevalier 2005/0225683 Al 10/2005 Voaguchi 2003/0151561 Al 9/2003 Sanford 2005/026990 Al 1/2/2005 Cok 2003/0197663 Al 10/2003 Sanford 2005/028582 Al 10/2005 Cok 2003/020563 Al 10/2003 Lee 2005/028582 Al 10/2005 Cok 2003/023080 Al 10/2003 Sanford 2005/028582 Al 10/2005 Cok 2003/023080 Al 10/2003 Sanford 2005/028582 Al 10/2005 Cok 2004/007557 Al 9/2003 Sanford 2005/028582 Al 10/2005 Cok 2004/007557 Al 9/2003 Sanford 2005/028582 Al 10/2005 Cok 2004/007557 Al 9/2004 Cok 2006/0077142 Al 1/2006 Cok 2004/007557 Al 9/2004 Asano 2006/007205 Al 1/2006 Cok 2004/007557 Al 9/2004 Asano 2006/0072078 Al 1/2006 Cok 2004/007557 Al 9/2004 Asano 2006/0073787 Al 1/2006 Cok 2004/007557 Al 9/2004 Asano 2006/0073878 Al 1/20							
2003/0062524 Al							
2003/0063081 A1 42003 Kimura 2005/0140610 A1 62005 Kim 2003/0071821 A1 42003 Sundahl 2005/0148891 A1 72005 Abe 2003/0090447 A1 52003 Kimura 2005/0148891 A1 72005 Abe 2003/0090447 A1 52003 Kimura 2005/0162079 A1 72005 Abe 2003/0090448 A1 52003 Kimura 2005/0162079 A1 72005 Abe 2003/0090448 A1 52003 Kimura 2005/0162079 A1 72005 Abe 2003/0107560 A1 62003 Kimura 2005/0162079 A1 72005 Abamoto 2003/011966 A1 62003 Mikami 2005/0179628 A1 82005 Yūki 2003/0122745 A1 72003 Mikami 2005/0179628 A1 82005 Vūki 2003/0122745 A1 72003 Both, Jr. 2005/0185200 A1 82005 Tobol Z003/0122749 A1 72003 Ishizuki 2005/0200575 A1 92005 Sasaki 2003/0142088 A1 72003 LeChevalier 2005/0205590 A1 92005 Sasaki 2003/01460887 A1 82003 Hunter 2005/0218787 A1 92005 Soguchi 2003/015569 A1 82003 LeChevalier 2005/0218481 A1 10/2005 Soguchi 2003/015159 A1 82003 LeChevalier 2005/0248518 A1 10/2005 Sozawa 2003/0179626 A1 92003 Sanford 2005/0248518 A1 11/2005 Naugler 2003/0179626 A1 92003 Sanford 2005/0269959 A1 12/2005 Cok 2003/0179626 A1 11/2003 Lechevalier 2005/0280615 A1 11/2005 Naugler 2003/0179626 A1 11/2003 Sanford 2005/0280615 A1 11/2005 Solomo 2003/018438 A1 10/2003 Sanford 2005/0280615 A1 11/2005 Solomo 2003/018438 A1 10/2003 Sanford 2005/0280615 A1 11/2005 Solomo 2003/018438 A1 10/2003 Sanford 2005/0280615 A1 11/2005 Solomo 2003/018438 A1 11/2003 Gimour 2005/0280615 A1 11/2005 Solomo 2003/018438 A1 11/2003 Gimour 2005/0280615 A1 11/2005 Solomo 2003/018538 A1 11/							
2003/0071691 A1							
2003/0076048 A1 4/2003 Rutherford 2005/0156831 A1 7/2005 Abe 2003/0090447 A1 5/2003 Kimura 2005/0162079 A1 7/2005 Sakamoto 2003/0090481 A1 5/2003 Kimura 2005/0168416 A1 7/2005 Sakamoto 2003/0119166 A1 6/2003 Yumoto 2005/0179628 A1 8/2005 Hashimoto 2003/0112749 A1 7/2003 Miyazawa 2005/0179628 A1 8/2005 Kimura 2003/0122749 A1 7/2003 Booth, Jr. 2005/0185200 A1 8/2005 Fubil 2003/0142088 A1 7/2003 Ishizuki 2005/020590 A1 9/2005 Sasaki 2003/0146897 A1 8/2003 Lechevalier 2005/021848 A1 10/2005 Sasaki 2003/0156101 A1 8/2003 Lechevalier 2005/0225688 A1 10/2005 Nozawa 2003/017962 A1 9/2003 Sanford 2005/0269959 A1 12/2005 Nocawa 2003/017963 A1 10				2005/0140610	A1	6/2005	Smith
2003/090481 Al 5/2003 Nimura 2005/0162079 Al 7/2005 Sakamoto 2003/0107560 Al 6/2003 Yumoto 2005/0168416 Al 8/2005 Hashimoto 2003/011966 Al 6/2003 Wilkiam 2005/0179628 Al 8/2005 Vuki 2003/0122745 Al 7/2003 Miyazawa 2005/0179628 Al 8/2005 Vuki 2003/0122745 Al 7/2003 Miyazawa 2005/0179628 Al 8/2005 Vuki 2003/0122813 Al 7/2003 Booth, Jr. 2005/020575 Al 9/2005 Kimura 2003/0122813 Al 7/2003 Booth, Jr. 2005/0206590 Al 9/2005 Kim 2003/0122813 Al 7/2003 LeChevalier 2005/0206590 Al 9/2005 Sasaki 2003/0146889 Al 8/2003 Lec 2005/0212787 Al 9/2005 Noguchi 2003/0151560 Al 8/2003 Lec 2005/0225683 Al 10/2005 Nozawa 2003/0156101 Al 8/2003 Lec 2005/0225683 Al 10/2005 Nozawa 2003/0179626 Al 9/2003 Sanford 2005/0269959 Al 12/2005 Cok 2003/0179626 Al 9/2003 Sanford 2005/0269960 Al 12/2005 Cok 2003/0197663 Al 10/2003 Cae 2005/0280766 Al 12/2005 Cok 2003/0210256 Al 11/2003 Gilmour 2005/0288782 Al 12/2005 Cok 2003/0230980 Al 12/2003 Gilmour 2005/0288822 Al 12/2005 Cok 2003/023382 Al 12/2003 Gilmour 2005/0288882 Al 12/2005 Eom 2003/023382 Al 12/2003 Lin 2006/0007027 Al 1/2006 Reddy 2004/0032382 Al 2/2004 Kawasaki 2006/0007249 Al 1/2006 Reddy Asano 2006/0007257 Al 1/2006 Reddy Asano 2006/0007257 Al 1/2006 Reddy 2004/0090186 Al 1/2004 Kawasaki 2006/0007288 Al 1/2006 Cok 2006/000728787 Al 1/2006 Cok 2004/0090186 Al 1/2004 Kawasaki 2006/0007280 Al 1/2006 Cok 2004/0090186 Al 1/2004 Kawasaki 2006/0007280 Al 1/2006 Reddy Al 2004/0090186 Al 1/2004 Kawasaki 2006/0007280 Al 1/2006 Reddy Al 2004/0090186 Al 1/2004 Kawasaki 2006/0007280 Al 1/2006 Cok 2004/0108518 Al 1/2004 Kawasaki 2006/00038785 Al 2/2006 Cok 2004/0108518 Al 1/2004 Kawa							
2003/0107560 A1 6/2003 Numoto 2005/0168416 A1 8/2005 Hashimoto 2003/0119626 A1 6/2003 Mikami 2005/0179626 A1 8/2005 Kimura 2003/0122745 A1 7/2003 Mikami 2005/0179626 A1 8/2005 Kimura 2003/0122749 A1 7/2003 Booth, Jr. 2005/0185200 A1 8/2005 Kimura 2003/0122749 A1 7/2003 Ishizuki 2005/0200575 A1 9/2005 Sasaki 2003/0142088 A1 7/2003 Ishizuki 2005/0200575 A1 9/2005 Sasaki 2003/0142088 A1 7/2003 Ishizuki 2005/0205590 A1 9/2005 Sasaki 2003/0142088 A1 7/2003 Ishizuki 2005/0216978 A1 9/2005 Sasaki 2003/0151569 A1 8/2003 Lechevalier 2005/0219184 A1 10/2005 Schere 2003/0156101 A1 8/2003 Lechevalier 2005/0225683 A1 10/2005 Nozawa 2003/0169241 A1 9/2003 Schere 2005/0225683 A1 10/2005 Nozawa 2003/0179626 A1 9/2003 Noguchi 2005/0269959 A1 12/2005 Coho 2003/0179626 A1 9/2003 Sanford 2005/0269959 A1 12/2005 Coho 2003/0179626 A1 9/2003 Sama 2005/0280615 A1 12/2005 Coho 2003/0179626 A1 11/2003 Sawa 2005/0280615 A1 12/2005 Johnson 2003/0230141 A1 12/2003 Gilmour 2005/0288582 A1 12/2005 Johnson 2003/0230144 A1 12/2003 Gilmour 2005/0285825 A1 12/2005 Coho 2004/0032382 A1 2/2005 Coho 2004/0070755 A1 4/2004 Kawasaki 2006/0007072 A1 1/2006 Chen 2004/0070555 A1 4/2004 Kawasaki 2006/001613 A1 1/2006 Chen 2004/0090408 A1 5/2004 Kawasaki 2006/0012305 A1 1/2006 Chen 2004/0090408 A1 5/2004 Kawasaki 2006/0007134 A1 1/2006 Chen 2004/0135749 A1 1/2004 Kawasaki 2006/00073055							
2003/011966 Al 6/2003 Mikami 2005/0179626 Al 8/2005 Yuki 2003/012745 Al 7/2003 Mikami 2005/0179628 Al 8/2005 Tobol 2003/0122749 Al 7/2003 Sobth, Jr. 2005/0185200 Al 8/2005 Tobol 2003/0122813 Al 7/2003 Ishizuki 2005/0200575 Al 9/2005 Kim 2003/0142088 Al 7/2003 Lechevalier 2005/0206590 Al 9/2005 Sasaki 2003/0146897 Al 8/2003 Lechevalier 2005/0212787 Al 9/2005 Noguchi 2003/0151569 Al 8/2003 Lechevalier 2005/0212787 Al 9/2005 Noguchi 2003/0151569 Al 8/2003 Lechevalier 2005/0212787 Al 9/2005 Noguchi 2003/0169241 Al 9/2003 LeChevalier 2005/0225683 Al 10/2005 Nozawa 2003/0169241 Al 9/2003 Sanford 2005/0269959 Al 12/2005 Noguchi 2003/0179626 Al 9/2003 Sanford 2005/0269969 Al 12/2005 Cok 2003/0179626 Al 10/2003 Sawa 2005/0269969 Al 12/2005 Cok 2003/0179626 Al 10/2003 Sawa 2005/0280615 Al 12/2005 Cok 2003/0179626 Al 11/2003 Lec 2005/0280616 Al 12/2005 Cok 2003/0210256 Al 11/2003 Gilmour 2005/02887822 Al 12/2005 Reddy 2003/023041 Al 12/2003 Gilmour 2005/0285825 Al 12/2005 Reddy 2003/023148 Al 12/2003 Cin 2006/0007072 Al 1/2006 Choi 2004/0032382 Al 2/2004 Cok 2006/0007206 Al 1/2006 Choi 2004/0032382 Al 2/2004 Kawasaki 2006/0007206 Al 1/2006 Choi 2004/000557 Al 4/2004 Kawasaki 2006/0007206 Al 1/2006 Chen 2004/0006357 Al 4/2004 Kawasaki 2006/0012311 Al 1/2006 Chen 2004/00070557 Al 4/2004 Kawasaki 2006/0022907 Al 2/2006 Chen 2004/0007358 Al 4/2004 Kawasaki 2006/0022907 Al 2/2006 Choi 2004/0006357 Al 4/2004 Kawasaki 2006/002305 Al 2/2006 Chen 2004/0007357 Al 4/2004 Kawasaki 2006/002305 Al 2/2006 Chen 2004/0006357 Al 4/2004 Kawasaki 2006/002305 Al 2/2006 Chen 2004/0006357 Al 4/2004 Chen 2006/002305 Al 2/2006 Chen 2004/0006357 Al 4/2004 Chen 2006/002305 Al 2/2006 Chen 2004/0006357 Al 4/2004 Chen 2006/002305 Al 2/2006 Che							
2003/0122745 Al							
2003/0122813 A1 7/2003 Ishizuki 2005/0200575 A1 9/2005 Sasaki 2003/0142088 A1 7/2003 Ishizuki 2005/0206590 A1 9/2005 Sasaki 2003/0146897 A1 8/2003 Hunter 2005/0212787 A1 9/2005 Sasaki 2003/0151569 A1 8/2003 Ice 2005/0219184 A1 10/2005 Zehner 2003/01516101 A1 8/2003 Ice 2005/0225683 A1 10/2005 Nozawa 2003/0154152 A1 9/2003 Noguchi 2005/0269959 A1 12/2005 Nozawa 2003/0174152 A1 9/2003 Noguchi 2005/0269959 A1 12/2005 Nozawa 2003/0179626 A1 9/2003 Noguchi 2005/0269969 A1 12/2005 One 2003/0179626 A1 9/2003 Sanford 2005/0269960 A1 12/2005 One 2003/0179626 A1 9/2003 Sanford 2005/0289615 A1 12/2005 One 2003/0197663 A1 10/2003 Ice 2005/0280766 A1 12/2005 Cok 2003/0210256 A1 11/2003 Gilmour 2005/0288522 A1 12/2005 Reddy 2003/0230980 A1 12/2003 Gilmour 2005/0288525 A1 12/2005 Eom 2003/0230980 A1 12/2003 Lin 2006/0007072 A1 1/2006 Reddy 2004/0041750 A1 3/2004 Abe 2006/0007749 A1 1/2006 Reddy 2004/0070557 A1 4/2004 Asano 2006/0007249 A1 1/2006 Reddy 2004/0090186 A1 5/2004 Kawasaki 2006/0007249 A1 1/2006 Reddy 2004/0090186 A1 5/2004 Kamauchi 2006/00072807 A1 2/2006 Gyawa 2004/0090186 A1 5/2004 Kamauchi 2006/00072807 A1 2/2006 Chen 2004/0090186 A1 5/2004 Kamauchi 2006/00072807 A1 2/2006 Chen 2004/010557 A1 4/2004 Kamauchi 2006/00072807 A1 2/2006 Cok 2004/010557 A1 4/2004 Kamauchi 2006/00072807 A1 2/2006 Cok 2004/010557 A1 4/2004 Kamauchi 2006/00072807 A1 2/2006 Cok 2004/0105574 A1 7/2004 Kondakov 2006/00073878 A1 2/2006 Routley 2004/0150594 A1 8/2004 Kondakov 2006/00077134 A1 4/2006 Cok 2004/0150595 A1 8/2004 Kasai 2006/00077134 A1 4/2006 Cok 2004/0150595 A1 8/2004 Kasai 2006/00077135 A1 4/2006 Cok 2004/0150595 A1 8/2004 Kasai 2006/00077135 A1 4/2006							
2003/0142088 A1 7/2003 LeChevalier 2005/0206590 A1 9/2005 Sasaki							
2003/0146897 Al %2003 Hunter 2005/0212787 Al 9/2005 Noguchi 2003/0151569 Al 8/2003 Lee 2005/0219184 Al 10/2005 Zehner 2003/0156101 Al 8/2003 Le Chevalier 2005/022683 Al 10/2005 Nozawa 2003/0169241 Al 9/2003 LeChevalier 2005/026851 Al 11/2005 Naugler 2003/0169241 Al 9/2003 Noguchi 2005/0269959 Al 12/2005 Naugler 2003/0179626 Al 9/2003 Sanford 2005/0269969 Al 12/2005 Cok 2003/0197663 Al 10/2003 Lee 2005/0280615 Al 12/2005 Cok 2003/0230141 Al 12/2003 Lee 2005/0288616 Al 12/2005 Johnson 2003/0230980 Al 12/2003 Gilmour 2005/0285822 Al 12/2005 Reddy 2003/0230141 Al 12/2003 Gilmour 2005/0285825 Al 12/2005 Eom 2003/0230141 Al 12/2003 Lin 2006/0007072 Al 1/2006 Routley 2003/0233148 Al 12/2003 Lin 2006/0007072 Al 1/2006 Routley 2003/023382 Al 2/2004 Cok 2006/0007020 Al 1/2006 Reddy Routley 2004/0066357 Al 4/2004 Asano 2006/0012310 Al 1/2006 Chen 2004/0070555 Al 4/2004 Asano 2006/0012310 Al 1/2006 Chen 2004/0090406 Al 5/2004 Asano 2006/0012310 Al 1/2006 Chen 2004/0090406 Al 5/2004 Asano 2006/0022907 Al 2/2006 Giraldo et al 2004/0090406 Al 5/2004 Yoo 2006/0022907 Al 2/2006 Nathan 2004/0095297 Al 5/2004 Kanauchi 2006/0038758 Al 2/2006 Routley 2004/015559 Al 8/2004 Kondakov 2006/0038762 Al 2/2006 Routley 2004/015559 Al 8/2004 Kasai 2006/007134 Al 4/2006 Cok 2006/007135 Al 2/2006 Routley 2004/0150594 Al 8/2004 Kasai 2006/0077135 Al 4/2006 Cok 2004/0150595 Al 8/2004 Kasai 2006/0077135 Al 4/2006 Cok 2004/0150595 Al 8/2004 Kasai 2006/0077135 Al 4/2006 Cok 2004/0150595 Al 8/2004 Kasai 2006/0077135 Al 4/2006 Cok 2004/0150594 Al 8/2004 Kasai 2006/0077135 Al 4/2006 Cok 2004/0150595 Al 8/2004 Kasai 2006/0077135							
2003/0151569 Al 8/2003 Lee 2005/0219184 Al 10/2005 Zehner 2003/0156101 Al 8/2003 Le Chevalier 2005/0225683 Al 10/2005 Nozawa 2003/0169241 Al 9/2003 Noguchi 2005/0269959 Al 11/2005 Naugler 2003/0174152 Al 9/2003 Noguchi 2005/0269959 Al 12/2005 Ono 2003/0179626 Al 9/2003 Sanford 2005/0269960 Al 12/2005 Ono 2003/0185438 Al 10/2003 Sanford 2005/0269960 Al 12/2005 Ono 2003/0185438 Al 10/2003 Lee 2005/0280615 Al 12/2005 Johnson 2003/0210256 Al 11/2003 Mori 2005/0285822 Al 12/2005 Reddy 2003/0230141 Al 12/2003 Gilmour 2005/0285822 Al 12/2005 Eom 2003/0230980 Al 12/2003 Eorrest 2006/0007072 Al 1/2006 Routley 2003/0231148 Al 12/2003 Lin 2006/0007072 Al 1/2006 Reddy 2004/0041750 Al 3/2004 Abe 2006/0007204 Al 1/2006 Reddy 2004/0066357 Al 4/2004 Asano 2006/0012310 Al 1/2006 Chen 2004/0070555 Al 4/2004 Asano 2006/0012310 Al 1/2006 Chen 2004/0090406 Al 5/2004 Asano 2006/0022907 Al 2/2006 Chen 2004/0090406 Al 5/2004 Yoo 2006/0022907 Al 2/2006 Nathan 2004/0095297 Al 5/2004 Kanauchi 2006/0038758 Al 2/2006 Nathan 2004/018518 Al 6/2004 Jo 2006/0038758 Al 2/2006 Routley 2004/0155547 Al 7/2004 Kondakov 2006/0038758 Al 2/2006 Routley 2004/0150594 Al 8/2004 Kasai 2006/0071315 Al 4/2006 Cok 2004/0150595 Al 8/2004 Kasai 2006/0077135 Al 4/2006 Cok 2004/0150595 Al 8/2004 Libsch 2006/0077135 Al 4/2006 Cok 2004/0150595 Al 8/2004 Libs							
2003/0169241 A1 9/2003 LeChevalier 2005/0248515 A1 11/2005 Uchino 2003/0179626 A1 9/2003 Sanford 2005/0269959 A1 12/2005 Uchino 2003/0179626 A1 9/2003 Sanford 2005/0269960 A1 12/2005 Uchino 2003/0185438 A1 10/2003 Osawa 2005/0280615 A1 12/2005 Cok 2003/0197663 A1 10/2003 Lee 2005/0280766 A1 12/2005 Enddy 2003/0210256 A1 11/2003 Gilmour 2005/028822 A1 12/2005 Enddy 2003/0230141 A1 12/2003 Gilmour 2005/0288825 A1 12/2005 End 2003/0230980 A1 12/2003 Forrest 2006/0001613 A1 1/2006 Routley 2003/023148 A1 12/2003 Lin 2006/0007072 A1 1/2006 Routley 2004/0032382 A1 2/2004 Cok 2006/0007072 A1 1/2006 Reddy et al. 2004/0041750 A1 3/2004 Abe 2006/0007249 A1 1/2006 Reddy et al. 2004/0070557 A1 4/2004 Kawasaki 2006/0012310 A1 1/2006 Reddy et al. 2004/0070555 A1 4/2004 Kanauchi 2006/0012313 A1 1/2006 Giraldo et al. 2004/0090400 A1 5/2004 Kanauchi 2006/0022305 A1 2/2006 Giraldo et al. 2004/0090400 A1 5/2004 Kanauchi 2006/0022305 A1 2/2006 Cok 2004/0108518 A1 6/2004 Jo 2006/0038758 A1 2/2006 Cok 2004/0105579 A1 5/2004 Libsch 2006/0038762 A1 2/2006 Cok 2004/015579 A1 5/2004 Kondakov 2006/0038762 A1 2/2006 Cok 2004/015579 A1 8/2004 Kondakov 2006/0038758 A1 2/2006 Cok 2004/0150592 A1 8/2004 Kasai 2006/0077134 A1 4/2006 Cok 2004/0150594 A1							
2003/0174152 A1 9/2003 Noguchi 2005/02699959 A1 12/2005 Uchino 2003/0179626 A1 9/2003 Sanford 2005/0269960 A1 12/2005 Ono 2003/0185438 A1 10/2003 Cosawa 2005/0280615 A1 12/2005 Cok 2003/0197663 A1 10/2003 Lee 2005/0280766 A1 12/2005 Johnson 2003/0210256 A1 11/2003 Mori 2005/0285822 A1 12/2005 Reddy 2003/0230141 A1 12/2003 Gilmour 2005/0285825 A1 12/2005 Bom 2003/0230980 A1 12/2003 Eom 2006/0007072 A1 12/2005 Eom 2004/0032382 A1 12/2003 Lin 2006/0007072 A1 12/2006 Reddy 2004/0032382 A1 2/2004 Cok 2006/0007072 A1 1/2006 Reddy Eddy 2004/0041750 A1 3/2004 Abe 2006/0007249 A1 1/2006 Reddy 2004/0066357 A1 4/2004 Kawasaki 2006/0012310 A1 1/2006 Chen 2004/0070557 A1 4/2004 Kawasaki 2006/0012310 A1 1/2006 Chen 2004/0070557 A1 4/2004 Kanauchi 2006/0012310 A1 1/2006 Giraldo et al. 2004/0090400 A1 5/2004 Yoo 2006/002305 A1 2/2006 Yoo 2006/002305 A1 2/2006 Young 2004/0095297 A1 5/2004 Kanauchi 2006/002305 A1 2/2006 Young 2004/0108518 A1 6/2004 Jo 2006/0038758 A1 2/2006 Chou 2004/018518 A1 6/2004 Jo 2006/0038758 A1 2/2006 Chou 2004/018518 A1 6/2004 Voo 2006/0038758 A1 2/2006 Chou 2004/018519 A1 7/2004 Kondakov 2006/0038758 A1 2/2006 Chou 2004/0150592 A1 8/2004 Kosama 2006/0077134 A1 4/2006 Cok 2004/0150595 A1 8/2004 Kasai 2006/0077135 A1 4/2006 Cok 2004/0150595 A1 8/2004 Kasai 2006/0077135 A1 4/2006 Cok 2004/0174347 A1 9/2004 Sun 2006/0082523 A1 4/2006 Cok 2004/0174347 A1 9/2004 Sun 2006/0092185 A1 5/2006 Gino 2006/0077135 A1 4/2006 Cok 2004/0174347 A1 9/2004 Sun 2006/0092185 A1 5/2006 Gio Gio Cok 2004/0174349 A1 9/2004 Libsch 2006/0092185 A1 5/2006 Gio Gio Cok 2004/0174349 A1 9/2004 Libsch	2003/0156101 A1	8/2003	Le Chevalier				
2003/0179626 A1 9/2003 Sanford 2005/0269960 A1 12/2005 Cok 2003/0185438 A1 10/2003 Lee 2005/0280766 A1 12/2005 Cok 2003/0197663 A1 10/2003 Lee 2005/0280766 A1 12/2005 Johnson 2003/0210256 A1 11/2003 Mori 2005/0285822 A1 12/2005 Reddy 2003/0230141 A1 12/2003 Gilmour 2005/0285825 A1 12/2005 Eom 2003/0230980 A1 12/2003 Lin 2006/0001613 A1 1/2006 Routley 2003/0231148 A1 12/2003 Lin 2006/0007072 A1 1/2006 Choi 2004/0032382 A1 2/2004 Cok 2006/0007206 A1 1/2006 Reddy et al. 2004/0041750 A1 3/2004 Abe 2006/0007204 A1 1/2006 Reddy et al. 2004/0066537 A1 4/2004 Kawasaki 2006/0012310 A1 1/2006 Chen 2004/0070555 A1 4/2004 Kawasaki 2006/0012311 A1 1/2006 Chen 2004/0090186 A1 5/2004 Kanauchi 2006/0022907 A1 2/2006 Giraldo et al. 2004/0090400 A1 5/2004 Yoo 2006/0022907 A1 2/2006 Vamashita 2004/0100427 A1 5/2004 Miyazawa 2006/0038762 A1 2/2006 Vamashita 2004/0135749 A1 5/2004 Kondakov 2006/0038758 A1 2/2006 Chou 2004/0135592 A1 8/2004 Kondakov 2006/0038762 A1 2/2006 Chou 2004/0150592 A1 8/2004 Kasai 2006/0077134 A1 4/2006 Cok 2004/0150595 A1 8/2004 Kasai 2006/0077134 A1 4/2006 Cok 2004/0174349 A1 9/2004 Libsch 2006/008253 A1 4/2006 Giuo 2004/0174349 A1 9/2004 Libsch 2006/0092185 A1 5/2006 Giuo 2006/0077142 A1 4/2006 Giuo 2004/0174349 A1 9/2004 Libsch 2006/0092185 A1		9/2003	LeChevalier				
2003/0185438							
2003/0210256							
2003/0230141							
2003/0230980							•
2003/0231148 A1 12/2003 Lin 2006/0007072 A1 1/2006 Choi 2004/0032382 A1 2/2004 Cok 2006/0007206 A1 1/2006 Reddy et al. 2004/0041750 A1 3/2004 Abe 2006/0007249 A1 1/2006 Reddy 2004/0070557 A1 4/2004 Kawasaki 2006/0012311 A1 1/2006 Ogawa 2004/0070565 A1 4/2004 Nayar 2006/0022305 A1 2/2006 Giraldo et al. 2004/0090186 A1 5/2004 Kanauchi 2006/0022305 A1 2/2006 Yamashita 2004/0090400 A1 5/2004 Kanauchi 2006/0027807 A1 2/2006 Vainashita 2004/01095297 A1 5/2004 Libsch 2006/0027807 A1 2/2006 Nathan 2004/0108518 A1 6/2004 Jo 2006/003084 A1 2/2006 Routley 2004/0140982 A1 7/2004 Kon							
2004/0042382 Al 2/2004 Cok 2006/0007249 Al 1/2006 Reddy 2004/0046357 Al 3/2004 Abe 2006/0012310 Al 1/2006 Chen 2004/0070557 Al 4/2004 Asano 2006/0012311 Al 1/2006 Ogawa 2004/0070565 Al 4/2004 Nayar 2006/0012272 Al 1/2006 Giraldo et al. 2004/0090186 Al 5/2004 Kanauchi 2006/0022305 Al 2/2006 Uchino 2004/0090400 Al 5/2004 Voo 2006/0022907 Al 2/2006 Uchino 2004/0095297 Al 5/2004 Libsch 2006/0027807 Al 2/2006 Nathan 2004/0100427 Al 5/2004 Miyazawa 2006/0038758 Al 2/2006 Voung 2004/0103518 Al 6/2004 Jo 2006/0038758 Al 2/2006 Chou 2004/0135749 Al 7/2004 Kondakov 2006/0038762 Al 2/2006 Chou 2004/0140982 Al 7/2004 Pate 2006/0044227 Al 3/2006 Cok 2004/0150592 Al 8/2004 Mizukoshi 2006/006533 Al 3/2006 Cok 2004/0150594 Al 8/2004 Koyama 2006/0077134 Al 4/2006 Hector et al. 2004/0150595 Al 8/2004 Kasai 2006/0077135 Al 4/2006 Cok							
2004/0066357 A1							
2004/0070557 Al 4/2004 Asano 2006/0012311 Al 1/2006 Giraldo et al. 2004/0070565 Al 4/2004 Nayar 2006/0015272 Al 1/2006 Giraldo et al. 2004/0090186 Al 5/2004 Kanauchi 2006/0022305 Al 2/2006 Yamashita 2004/0090400 Al 5/2004 Yoo 2006/0022907 Al 2/2006 Uchino 2004/0100427 Al 5/2004 Libsch 2006/003084 Al 2/2006 Nathan 2004/0108518 Al 6/2004 Jo 2006/0038758 Al 2/2006 Young 2004/0135749 Al 7/2004 Kondakov 2006/0038762 Al 2/2006 Chou 2004/0140982 Al 7/2004 Pate 2006/0044227 Al 3/2006 Cok 2004/0150592 Al 8/2004 Mizukoshi 2006/0061248 Al 3/2006 Cok 2004/0150594 Al 8/2004 Koyama <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
2004/0070565							
2004/0090186 A1 5/2004 Kanauchi 2006/0022305 A1 2/2006 Yamashita 2004/0090400 A1 5/2004 Yoo 2006/0022907 A1 2/2006 Uchino 2004/0095297 A1 5/2004 Libsch 2006/0023084 A1 2/2006 Nathan 2004/010427 A1 5/2004 Miyazawa 2006/00308758 A1 2/2006 Routley 2004/0135749 A1 7/2004 Kondakov 2006/0038762 A1 2/2006 Chou 2004/0145982 A1 7/2004 Kondakov 2006/0044227 A1 3/2006 Chou 2004/0145547 A1 7/2004 Oh 2006/0061248 A1 3/2006 Cok 2004/0150592 A1 8/2004 Mizukoshi 2006/0066533 A1 3/2006 Cok 2004/0150593 A1 8/2004 Koyama 2006/0077134 A1 4/2006 Hector et al. 2004/0150595 A1 8/2004 Kasai <td></td> <td></td> <td></td> <td>2006/0015272</td> <td>A1</td> <td>1/2006</td> <td>Giraldo et al.</td>				2006/0015272	A1	1/2006	Giraldo et al.
2004/0095297 A1 5/2004 Libsch 2006/0027807 A1 2/2006 Nathan 2004/0100427 A1 5/2004 Miyazawa 2006/0030084 A1 2/2006 Young 2004/0108518 A1 6/2004 Jo 2006/0038758 A1 2/2006 Routley 2004/0135749 A1 7/2004 Kondakov 2006/0038762 A1 2/2006 Chou 2004/0140982 A1 7/2004 Pate 2006/0044227 A1 3/2006 Hadcock 2004/0145547 A1 7/2004 Oh 2006/00661248 A1 3/2006 Cok 2004/0150592 A1 8/2004 Mizukoshi 2006/0066533 A1 3/2006 Sato 2004/0150594 A1 8/2004 Koyama 2006/0077134 A1 4/2006 Hector et al. 2004/0150595 A1 8/2004 Kasai 2006/0077135 A1 4/2006 Kwon 2004/0155841 A1 8/2004 Kasai							
2004/0100427 A1 5/2004 Miyazawa 2006/0030084 A1 2/2006 Young 2004/0108518 A1 6/2004 Jo 2006/0038758 A1 2/2006 Routley 2004/0135749 A1 7/2004 Kondakov 2006/0038762 A1 2/2006 Chou 2004/0140982 A1 7/2004 Pate 2006/0044227 A1 3/2006 Hadcock 2004/0145547 A1 7/2004 Oh 2006/0061248 A1 3/2006 Cok 2004/0150592 A1 8/2004 Mizukoshi 2006/0066533 A1 3/2006 Sato 2004/0150594 A1 8/2004 Koyama 2006/0077134 A1 4/2006 Hector et al. 2004/0150595 A1 8/2004 Kasai 2006/0077135 A1 4/2006 Cok 2004/0155841 A1 8/2004 Kasai 2006/0077142 A1 4/2006 Kwon 2004/0174347 A1 9/2004 Sun 2006/0082523 A1 4/2006 Guo 2004/0174349 A1 9/2004 Libsch 2006/0092185 A1 5/2006 Jo							
2004/0108518 A1 6/2004 Jo 2006/0038758 A1 2/2006 Routley 2004/0135749 A1 7/2004 Kondakov 2006/0038762 A1 2/2006 Chou 2004/0140982 A1 7/2004 Pate 2006/0044227 A1 3/2006 Hadcock 2004/0145547 A1 7/2004 Oh 2006/0061248 A1 3/2006 Cok 2004/0150592 A1 8/2004 Mizukoshi 2006/0066533 A1 3/2006 Sato 2004/0150594 A1 8/2004 Koyama 2006/0077134 A1 4/2006 Hector et al. 2004/0150595 A1 8/2004 Kasai 2006/0077135 A1 4/2006 Cok 2004/0155841 A1 8/2004 Kasai 2006/0077142 A1 4/2006 Kwon 2004/0174347 A1 9/2004 Sun 2006/0082523 A1 4/2006 Guo 2004/0174349 A1 9/2004 Libsch 2006/0092185 A1 5/2006 Jo							
2004/0135749 A1 7/2004 Kondakov 2006/0038762 A1 2/2006 Chou 2004/0140982 A1 7/2004 Pate 2006/0044227 A1 3/2006 Hadcock 2004/0145547 A1 7/2004 Oh 2006/0061248 A1 3/2006 Cok 2004/0150592 A1 8/2004 Mizukoshi 2006/006533 A1 3/2006 Sato 2004/0150594 A1 8/2004 Koyama 2006/0077134 A1 4/2006 Hector et al. 2004/0150595 A1 8/2004 Kasai 2006/0077135 A1 4/2006 Cok 2004/0155841 A1 8/2004 Kasai 2006/0077142 A1 4/2006 Kwon 2004/0174347 A1 9/2004 Sun 2006/0082523 A1 4/2006 Guo 2004/0174349 A1 9/2004 Libsch 2006/0092185 A1 5/2006 Jo		6/2004	Jo				
2004/0145547 A1 7/2004 Oh 2006/0061248 A1 3/2006 Cok 2004/0150592 A1 8/2004 Mizukoshi 2006/0066533 A1 3/2006 Sato 2004/0150594 A1 8/2004 Koyama 2006/0077134 A1 4/2006 Hector et al. 2004/0150595 A1 8/2004 Kasai 2006/0077135 A1 4/2006 Cok 2004/0155841 A1 8/2004 Kasai 2006/0077142 A1 4/2006 Kwon 2004/0174347 A1 9/2004 Sun 2006/0082523 A1 4/2006 Guo 2004/0174349 A1 9/2004 Libsch 2006/0092185 A1 5/2006 Jo							
2004/0150592 A1 8/2004 Mizukoshi 2006/0066533 A1 3/2006 Sato 2004/0150594 A1 8/2004 Koyama 2006/0077134 A1 4/2006 Hector et al. 2004/0150595 A1 8/2004 Kasai 2006/0077135 A1 4/2006 Cok 2004/0155841 A1 8/2004 Kasai 2006/0077142 A1 4/2006 Kwon 2004/0174347 A1 9/2004 Sun 2006/0082523 A1 4/2006 Guo 2004/0174349 A1 9/2004 Libsch 2006/0092185 A1 5/2006 Jo							
2004/0150594 A1 8/2004 Koyama 2006/0077134 A1 4/2006 Hector et al. 2004/0150595 A1 8/2004 Kasai 2006/0077135 A1 4/2006 Cok 2004/0155841 A1 8/2004 Kasai 2006/0077142 A1 4/2006 Kwon 2004/0174347 A1 9/2004 Sun 2006/0082523 A1 4/2006 Guo 2004/0174349 A1 9/2004 Libsch 2006/0092185 A1 5/2006 Jo							
2004/0150595 A1 8/2004 Kasai 2006/0077135 A1 4/2006 Cok 2004/0155841 A1 8/2004 Kasai 2006/0077142 A1 4/2006 Kwon 2004/0174347 A1 9/2004 Sun 2006/0082523 A1 4/2006 Guo 2004/0174349 A1 9/2004 Libsch 2006/0092185 A1 5/2006 Jo							
2004/0155841 A1 8/2004 Kasai 2006/0077142 A1 4/2006 Kwon 2004/0174347 A1 9/2004 Sun 2006/0082523 A1 4/2006 Guo 2004/0174349 A1 9/2004 Libsch 2006/0092185 A1 5/2006 Jo			•				
2004/0174349 A1 9/2004 Libsch 2006/0092185 A1 5/2006 Jo		8/2004	Kasai				
2004/01/4354 A1 9/2004 Ono 2006/0097628 A1 5/2006 Suh							
	2004/0174354 A1	9/2004	Ono	2006/009/628	Al	5/2006	Suh

(56)	Referen	nces Cited	2008/0191976 A1 2008/0198103 A1	8/2008	Nathan Toyomura
U.S	. PATENT	DOCUMENTS	2008/0211749 A1	9/2008	Weitbruch
2006/0007621 41	5/2006	т	2008/0218451 A1 2008/0231558 A1		Miyamoto Naugler
2006/0097631 A1 2006/0103324 A1	5/2006 5/2006		2008/0231562 A1	9/2008	
2006/0103611 A1	5/2006	Choi	2008/0231625 A1		Minami
2006/0125740 A1		Shirasaki et al.	2008/0246713 A1 2008/0252223 A1	10/2008 10/2008	
2006/0149493 A1 2006/0170623 A1		Sambandan Naugler, Jr.	2008/0252571 A1	10/2008	
2006/0176250 A1		Nathan	2008/0259020 A1		Fisekovic
2006/0208961 A1		Nathan	2008/0290805 A1 2008/0297055 A1	11/2008 12/2008	
2006/0208971 A1 2006/0214888 A1	9/2006 9/2006	Schneider	2009/0033598 A1	2/2009	
2006/0231740 A1	10/2006		2009/0058772 A1	3/2009	
2006/0232522 A1	10/2006	,	2009/0109142 A1 2009/0121994 A1	5/2009	Takahara Miyata
2006/0244697 A1 2006/0256048 A1	11/2006 11/2006	Fish et al.	2009/0146926 A1	6/2009	Sung
2006/0261841 A1	11/2006	Fish	2009/0160743 A1		Tomida
2006/0273997 A1 2006/0279481 A1	12/2006 12/2006		2009/0174628 A1 2009/0184901 A1	7/2009 7/2009	
2006/02/9481 A1 2006/0284801 A1	12/2006		2009/0195483 A1	8/2009	Naugler, Jr.
2006/0284802 A1	12/2006		2009/0201281 A1 2009/0206764 A1	8/2009 8/2009	Routley Schemmann
2006/0284895 A1 2006/0290614 A1	12/2006 12/2006		2009/0200704 A1 2009/0207160 A1	8/2009	
2006/0290614 A1 2006/0290618 A1	12/2006		2009/0213046 A1	8/2009	Nam
2007/0001937 A1	1/2007	Park	2009/0244046 A1	10/2009	Seto Yamashita
2007/0001939 A1 2007/0008251 A1		Hashimoto Kohno	2009/0262047 A1 2010/0004891 A1	1/2010	
2007/0008251 A1 2007/0008268 A1	1/2007		2010/0026725 A1	2/2010	Smith
2007/0008297 A1		Bassetti	2010/0039422 A1 2010/0039458 A1	2/2010 2/2010	
2007/0057873 A1 2007/0057874 A1		Uchino Le Roy	2010/0039438 A1 2010/0045646 A1	2/2010	
2007/0069998 A1		Naugler	2010/0045650 A1		Fish et al.
2007/0075727 A1		Nakano	2010/0060911 A1 2010/0073335 A1	3/2010 3/2010	
2007/0076226 A1 2007/0080905 A1		Klompenhouwer Takahara	2010/0073357 A1	3/2010	
2007/0080906 A1	4/2007	Tanabe	2010/0079419 A1		Shibusawa
2007/0080908 A1 2007/0097038 A1		Nathan Yamazaki	2010/0085282 A1 2010/0103160 A1	4/2010 4/2010	
2007/0097038 AT 2007/0097041 AT	5/2007		2010/0134469 A1	6/2010	Ogura et al.
2007/0103411 A1		Cok et al.	2010/0134475 A1 2010/0165002 A1	6/2010 7/2010	Ogura et al.
2007/0103419 A1 2007/0115221 A1		Uchino Buchhauser	2010/0188320 A1*		Min G09G 3/3291
2007/0126672 A1	6/2007	Tada et al.			345/80
2007/0164664 A1		Ludwicki	2010/0194670 A1 2010/0207960 A1	8/2010 8/2010	
2007/0164937 A1 2007/0164938 A1	7/2007 7/2007		2010/0225630 A1	9/2010	
2007/0182671 A1	8/2007	Nathan	2010/0251295 A1		Amento
2007/0236134 A1 2007/0236440 A1	10/2007 10/2007		2010/0277400 A1 2010/0315319 A1	11/2010 12/2010	
2007/0236517 A1	10/2007		2011/0050870 A1	3/2011	Hanari
2007/0241999 A1	10/2007		2011/0063197 A1 2011/0069051 A1	3/2011	Chung Nakamura
2007/0273294 A1 2007/0285359 A1	12/2007	Nagayama Ono	2011/0069031 A1 2011/0069089 A1	3/2011	
2007/0290957 A1	12/2007	Cok	2011/0069096 A1	3/2011	
2007/0290958 A1 2007/0296672 A1	12/2007 12/2007		2011/0074750 A1 2011/0074762 A1	3/2011	Leon Shirasaki et al.
2008/0001525 A1	1/2008		2011/0109610 A1	5/2011	Yamamoto
2008/0001544 A1		Murakami	2011/0149166 A1	6/2011	
2008/0030518 A1 2008/0036706 A1		Higgins Kitazawa	2011/0169798 A1 2011/0175895 A1	7/2011 7/2011	Hayakawa
2008/0036708 A1		Shirasaki	2011/0181630 A1	7/2011	Smith
2008/0042942 A1		Takahashi	2011/0199395 A1 2011/0227964 A1	8/2011 9/2011	Nathan Chaii
2008/0042948 A1 2008/0048951 A1		Yamashita Naugler, Jr.	2011/0242074 A1		Bert et al.
2008/0055209 A1	3/2008	Cok	2011/0273399 A1	11/2011	
2008/0055211 A1 2008/0074413 A1	3/2008 3/2008	Ogawa	2011/0279488 A1 2011/0292006 A1	11/2011 12/2011	
2008/00/4413 A1 2008/0088549 A1		Nathan	2011/0293480 A1	12/2011	Mueller
2008/0088648 A1	4/2008	Nathan	2012/0056558 A1		Toshiya
2008/0111766 A1 2008/0116787 A1	5/2008 5/2008	Uchino Hsu	2012/0062565 A1 2012/0262184 A1	3/2012 10/2012	
2008/0117144 A1		Nakano et al.	2012/0299970 A1	11/2012	Bae
2008/0136770 A1		Peker et al.	2012/0299973 A1	11/2012	
2008/0150845 A1 2008/0150847 A1	6/2008 6/2008		2012/0299978 A1 2013/0002527 A1	11/2012 1/2013	
2008/0158115 A1		Cordes	2013/0002327 A1 2013/0027381 A1		Nathan
2008/0158648 A1	7/2008	Cummings	2013/0057595 A1	3/2013	Nathan

(56)	Referen	ces Cited	JP JP	11-219146 11 231805	8/1999 8/1999
	U.S. PATENT	DOCUMENTS	JP	11-282419	10/1999
2013/011296	50 A1 5/2013	Chaii	JP JP	2000-056847 2000-81607	2/2000 3/2000
2013/013527	72 A1 5/2013	Park	JP JP	2001-134217 2001-195014	5/2001 7/2001
2013/016261 2013/020122			JP	2002-055654	2/2002
2013/024181	13 A1 9/2013	Tanaka	JP JP	2002-91376 2002-514320	3/2002 5/2002
2013/030982 2013/032167		Yoo Cote	JP	2002-229513	8/2002
2014/001582	24 A1 1/2014	Chaji et al.	JP JP	2002-278513 2002-333862	9/2002 11/2002
2014/002228 2014/004331		Chaji et al.	JP	2003-076331	3/2003
2014/005550	00 A1 2/2014	Lai	JР JР	2003-124519 2003-177709	4/2003 6/2003
2014/011156 2016/027586		Nathan et al. Wu	JP	2003-271095	9/2003
-			JР JР	2003-308046 2003-317944	10/2003 11/2003
F	OREIGN PATE	NT DOCUMENTS	JP	2004-004675	1/2004
CA	2 249 592	7/1998	JР JР	2004-045648 2004-145197	2/2004 5/2004
CA CA	2 368 386 2 242 720	9/1999 1/2000	JP	2004-287345	10/2004
CA	2 354 018	6/2000	JP JP	2005-057217 2007-065015	3/2005 3/2007
CA CA	2 432 530 2 436 451	7/2002 8/2002	JP	2007-155754	6/2007
CA	2 438 577	8/2002	JР JР	2008-102335 4-158570	5/2008 10/2008
CA CA	2 463 653 2 498 136	1/2004 3/2004	JP	2003-195813	7/2013
CA	2 522 396	11/2004	KR TW	2004-0100887 342486	12/2004 10/1998
CA CA	2 443 206 2 472 671	3/2005 12/2005	TW	473622	1/2002
CA	2 567 076	1/2006	TW TW	485337 502233	5/2002 9/2002
CA CA	2526436 2 526 782	2/2006 4/2006	TW	538650	6/2003
CA	2 541 531	7/2006	TW TW	1221268 1223092	9/2004 11/2004
CA CA	2 550 102 2 773 699	4/2008 10/2013	TW	200727247	7/2007
CN	1381032	11/2002	WO WO	WO 1998/48403 WO 1999/48079	10/1998 9/1999
CN CN	1448908 1623180 A	10/2003 6/2005	wo	WO 2001/06484	1/2001
CN	1682267 A	10/2005	WO	WO 2001/27910 A1	4/2001
CN CN	1758309 A 1760945	4/2006 4/2006	WO WO	WO 2001/63587 A2 WO 2002/067327 A	8/2001 8/2002
CN	1886774	12/2006	WO	WO 2003/001496 A1	1/2003
CN CN	1897093 A 101194300 A	7/2007 6/2008	WO WO	WO 2003/034389 A WO 2003/058594 A1	4/2003 7/2003
CN	101449311	6/2009	WO	WO 2003/063124	7/2003
CN CN	101615376 102656621	12/2009 9/2012	WO WO	WO 2003/077231 WO 2004/003877	9/2003 1/2004
CN	102725786 A	10/2012	wo	WO 2004/005877 WO 2004/025615 A	3/2004
EP EP	0 158 366 1 028 471	10/1985 8/2000	WO WO	WO 2004/034364 WO 2004/047058	4/2004
EP	1 111 577	6/2001	WO	WO 2004/04/038 WO 2004/066249 A1	6/2004 8/2004
EP EP	1 130 565 A1 1 194 013	9/2001 4/2002	WO	WO 2004/104975 A1	12/2004
EP	1 335 430 A1	8/2003	WO WO	WO 2005/022498 WO 2005/022500 A	3/2005 3/2005
EP EP	1 372 136 1 381 019	12/2003 1/2004	WO	WO 2005/029455	3/2005
EP	1 418 566 1 429 312 A	5/2004	WO WO	WO 2005/029456 WO/2005/034072 A1	3/2005 4/2005
EP EP	1429 312 A 145 0341 A	6/2004 8/2004	wo	WO 2005/055185	6/2005
EP EP	1 465 143 A 1 469 448 A	10/2004 10/2004	WO	WO 2006/000101 A1	1/2006
EP EP	1 521 203 A2	4/2005	WO WO	WO 2006/053424 WO 2006/063448 A	5/2006 6/2006
EP EP	1 594 347 1 784 055 A2	11/2005 5/2007	WO	WO 2006/084360	8/2006
EP	1854338 A1	11/2007	WO WO	WO 2007/003877 A WO 2007/079572	1/2007 7/2007
EP EP	1 879 169 A1 1 879 172	1/2008 1/2008	WO	WO 2007/090287 A1	8/2007
EP	2395499 A1	12/2011	WO WO	WO 2007/120849 A2 WO 2009/048618	10/2007 4/2009
GВ JP	2 389 951 1272298	12/2003 10/1989	WO	WO 2009/048618 WO 2009/055920	5/2009
JP	4-042619	2/1992	WO	WO 2010/023270	3/2010
JP JP	6-314977 8-340243	11/1994 12/1996	WO WO	WO 2010/146707 A1 WO 2011/041224 A1	12/2010 4/2011
JP	09-090405	4/1997	WO	WO 2011/064761 A1	6/2011
JP JP	10-254410 11-202295	9/1998 7/1999	WO WO	WO 2011/067729 WO 2012/160424 A1	6/2011 11/2012
V.1	11 404411	111111	"0	5 2012/100727 /11	11/2012

(56) References Cited

FOREIGN PATENT DOCUMENTS

WO WO 2012/160471 11/2012 WO WO 2012/164474 A2 12/2012 WO WO 2012/164475 A2 12/2012

OTHER PUBLICATIONS

Alexander: "Pixel circuits and drive schemes for glass and elastic AMOLED displays"; dated Jul. 2005 (9 pages).

Alexander: "Unique Electrical Measurement Technology for Compensation, Inspection, and Process Diagnostics of AMOLED HDTV"; dated May 2010 (4 pages).

Ashtiani: "AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation"; dated Mar. 2007 (4 pages).

Chaji: "A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays"; dated Jul. 2008 (5 pages). Chaji: "A fast settling current driver based on the CCII for AMOLED displays"; dated Dec. 2009 (6 pages).

Chaji: "A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V~T- and V~O~L~E~D Shift Compensation"; dated May 2007 (4 pages).

Chaji: "A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays"; dated Jun. 2005 (4 pages). Chaji: "A low-power high-performance digital circuit for deep submicron technologies"; dated Jun. 2005 (4 pages).

Chaji: "A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs"; dated Oct. 2005 (3 pages).

Chaji: "A Novel Driving Scheme and Pixel Circuit for AMOLED Displays"; dated Jun. 2006 (4 pages).

Chaji: "A Novel Driving Scheme for High Resolution Large-area a-SI:H AMOLED displays"; dated Aug. 2005 (3 pages).

Chaji: "A Stable Voltage-Programmed Pixel Circuit for a-Si:H AMOLED Displays"; dated Dec. 2006 (12 pages).

Chaji: "A Sub-µA fast-settling current-programmed pixel circuit for AMOLED displays"; dated Sep. 2007.

Chaji: "An Enhanced and Simplified Optical Feedback Pixel Circuit for AMOLED Displays"; dated Oct. 2006.

Chaji: "Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices"; dated Aug. 2008. Chaji: "Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel"; dated Apr. 2005 (2 pages).

Chaji: "Dynamic-effect compensating technique for stable a-Si:H AMOLED displays"; dated Aug. 2005 (4 pages).

Chaji: "Electrical Compensation of OLED Luminance Degradation"; dated Dec. 2007 (3 pages).

Chaji: "eUTDSP: a design study of a new VLIW-based DSP architecture"; dated May 2003 (4 pages).

Chaji: "Fast and Offset-Leakage Insensitive Current-Mode Line Driver for Active Matrix Displays and Sensors"; dated Feb. 2009 (8

Chaji: "High Speed Low Power Adder Design With a New Logic Style: Pseudo Dynamic Logic (SDL)"; dated Oct. 2001 (4 pages). Chaji: "High-precision, fast current source for large-area current-programmed a-Si flat panels"; dated Sep. 2006 (4 pages).

Chaji: "Low-Cost AMOLED Television with IGNIS Compensating Technology"; dated May 2008 (4 pages).

Chaji: "Low-Cost Stable a-Si:H AMOLED Display for Portable Applications"; dated Jun. 2006 (4 pages).

Chaji: "Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display"; dated Jun. 2008 (5 pages).

Chaji: "Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging"; dated Nov. 2008 (3 pages).

Chaji: "Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays"; dated May 2007 (6 pages).

Chaji: "Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family"; dated 2002 (4 pages).

Chaji: "Stable a-Si:H circuits based on short-term stress stability of amorphous silicon thin film transistors"; dated May 2006 (4 pages).

Chaji: "Stable Pixel Circuit for Small-Area High-Resolution a-Si:H AMOLED Displays"; dated Oct. 2008 (6 pages).

Chaji: "Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback"; dated Feb. 2010 (2 pages). Chaji: "Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays"; dated 2008 (177 pages).

European Search Report for Application No. EP 04 78 6661 dated Mar. 9, 2009.

European Search Report for Application No. EP 05 75 9141 dated Oct. 30, 2009 (2 pages).

European Search Report for Application No. EP 05 81 9617 dated Jan. 30, 2009.

European Search Report for Application No. EP 06 70 5133 dated Jul. 18, 2008.

European Search Report for Application No. EP 06 72 1798 dated Nov. 12, 2009 (2 pages).

European Search Report for Application No. EP 07 71 0608.6 dated Mar. 19, 2010 (7 pages).

European Search Report for Application No. EP 07 71 9579 dated May 20, 2009.

European Search Report for Application No. EP 07 81 5784 dated Jul. 20, 2010 (2 pages).

European Search Report for Application No. EP 10 16 6143, dated Sep. 3, 2010 (2 pages).

European Search Report for Application No. EP 10 83 4294.0-1903, dated Apr. 8, 2013, (9 pages).

European Supplementary Search Report for Application No. EP 04 78 6662 dated Jan. 19, 2007 (2 pages).

Extended European Search Report for Application No. 11 73 9485.8 dated Aug. 6, 2013 (14 pages).

Extended European Search Report for Application No. EP 09 73 3076.5, dated Apr. 27, (13 pages).

Extended European Search Report for Application No. EP 11 16 8677.0, dated Nov. 29, 2012, (13 page).

Extended European Search Report for Application No. EP 11 19 1641.7 dated Jul. 11, 2012 (14 pages).

Extended European Search Report for Application No. EP 10834297 dated Oct. 27, 2014 (6 pages).

Fossum, Eric R.. "Active Pixel Sensors: Are CCD's Dinosaurs?" SPIE: Symposium on Electronic Imaging. Feb. 1, 1993 (13 pages). Goh, "A New a-Si:H Thin-Film Transistor Pixel Circuit for Active-Matrix Organic Light-Emitting Diodes", IEEE Electron Device Letters, vol. 24, No. 9, Sep. 2003, pp. 583-585.

International Preliminary Report on Patentability for Application No. PCT/CA2005/001007 dated Oct. 16, 2006, 4 pages.

International Search Report for Application No. PCT/CA2004/001741 dated Feb. 21, 2005.

International Search Report for Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (2 pages).

International Search Report for Application No. PCT/CA2005/001007 dated Oct. 18, 2005.

International Search Report for Application No. PCT/CA2005/001897, dated Mar. 21, 2006 (2 pages).

International Search Report for Application No. PCT/CA2007/000652 dated Jul. 25, 2007.

International Search Report for Application No. PCT/CA2009/000501, dated Jul. 30, 2009 (4 pages).

International Search Report for Application No. PCT/CA2009/001769, dated Apr. 8, 2010 (3 pages).

International Search Report for Application No. PCT/IB2010/

055481, dated Apr. 7, 2011, 3 pages. International Search Report for Application No. PCT/IB2010/

055486, dated Apr. 19, 2011, 5 pages.

International Search Report for Application No. PCT/IB2014/060959, dated Aug. 28, 2014, 5 pages.

International Search Report for Application No. PCT/IB2010/055541 filed Dec. 1, 2010, dated May 26, 2011; 5 pages.

International Search Report for Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (6 pages).

International Search Report for Application No. PCT/IB2011/051103, dated Jul. 8, 2011, 3 pages.

International Search Report for Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages).

(56) References Cited

OTHER PUBLICATIONS

International Search Report for Application No. PCT/IB2012/052372, dated Sep. 12, 2012 (3 pages).

International Search Report for Application No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (4 pages).

International Search Report for Application No. PCT/JP02/09668, dated Dec. 3, 2002, (4 pages).

International Written Opinion for Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (5 pages). International Written Opinion for Application No. PCT/CA2005/

001897, dated Mar. 21, 2006 (4 pages).

International Written Opinion for Application No. PCT/CA2009/000501 dated Jul. 30, 2009 (6 pages).

International Written Opinion for Application No. PCT/IB2010/055481, dated Apr. 7, 2011, 6 pages.

International Written Opinion for Application No. PCT/IB2010/055486, dated Apr. 19, 2011, 8 pages.

International Written Opinion for Application No. PCT/IB2010/055541, dated May 26, 2011; 6 pages.

International Written Opinion for Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (7 pages).

International Written Opinion for Application No. PCT/IB2011/051103, dated Jul. 8, 2011, 6 pages.

International Written Opinion for Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages). International Written Opinion for Application No. PCT/IB2012/052372, dated Sep. 12, 2012 (6 pages).

International Written Opinion for Application No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (5 pages).

Jafarabadiashtiani: "A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback"; dated 2005 (4 pages).

Kanicki, J., "Amorphous Silicon Thin-Film Transistors Based Active-Matrix Organic Light-Emitting Displays." Asia Display: International Display Workshops, Sep. 2001 (pp. 315-318).

Karim, K. S., "Amorphous Silicon Active Pixel Sensor Readout Circuit for Digital Imaging." IEEE: Transactions on Electron Devices. vol. 50, No. 1, Jan. 2003 (pp. 200-208).

Lee: "Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon"; dated 2006.

Lee, Wonbok: "Thermal Management in Microprocessor Chips and Dynamic Backlight Control in Liquid Crystal Displays", Ph.D. Dissertation, University of Southern California (124 pages).

Liu, P. et al., Innovative Voltage Driving Pixel Circuit Using Organic Thin-Film Transistor for AMOLEDs, Journal of Display Technology, vol. 5, Issue 6, Jun. 2009 (pp. 224-227).

Ma EY: "organic light emitting diode/thin film transistor integration for foldable displays" dated Sep. 15, 1997(4 pages).

Matsueda y: "35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver"; dated May 2004.

Mendes E., "A High Resolution Switch-Current Memory Base Cell." IEEE: Circuits and Systems. vol. 2, Aug. 1999 (pp. 718-721). Nathan A., "Thin Film imaging technology on glass and plastic" ICM 2000, proceedings of the 12 international conference on microelectronics, dated Oct. 31, 2001 (4 pages).

Nathan, "Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic", IEEE Journal of Solid-State Circuits, vol. 39, No. 9, Sep. 2004, pp. 1477-1486. Nathan: "Backplane Requirements for active Matrix Organic Light Emitting Diode Displays,"; dated 2006 (16 pages).

Nathan: "Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation"; dated Sep. 2009 (1 page).

Nathan: "Driving schemes for a-Si and LTPS AMOLED displays"; dated Dec. 2005 (11 pages).

Nathan: "Invited Paper: a-Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)"; dated 2006 (4 pages).

Office Action in Japanese patent application No. JP2012-541612 dated Jul. 15, 2014. (3 pages).

Partial European Search Report for Application No. EP 11 168 677.0, dated Sep. 22, 2011 (5 pages).

Partial European Search Report for Application No. EP 11 19 1641.7, dated Mar. 20, 2012 (8 pages).

Philipp: "Charge transfer sensing" Sensor Review, vol. 19, No. 2, Dec. 31, 1999 (Dec. 31, 1999), 10 pages.

Rafati : "Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles"; dated 2002 (4 pages).

Safavian: "3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging"; dated Jun. 2006 (4 pages).

Safavian: "A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging"; dated May 2007 (7 pages).

Safavian: "A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging"; dated May 2008 (4 pages).

Safavian: "Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy"; dated Aug. 2005 (4 pages).

Safavian: "TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-82]"; dated Sep. 2005 (9 pages).

Safavian: "Three-TFT image sensor for real-time digital X-ray imaging"; dated Feb. 2, 2006 (2 pages).

Singh, "Current Conveyor: Novel Universal Active Block", Samriddhi, S-JPSET vol. I, Issue 1, 2010, pp. 41-48 (12EPPT).

Smith, Lindsay I., "A tutorial on Principal Components Analysis," dated Feb. 26, 2001, (27 pages).

Spindler, System Considerations for RGBW OLED Displays, Journal of the SID 14/1, 2006, pp. 37-48.

Snorre Aunet: "switched capacitors circuits", University of Oslo, Mar. 7, 2011 (Mar. 7, 2011), XP002729694, Retrieved from the Internet: URL:http://www.uio.no/studier/emner/matnat/ifi/INF4420/v11/undervisningsmateriale/INF4420_V11_0308_1.pdf [retrieved on Sep. 9, 2014].

Stewart M., "polysilicon TFT technology for active matrix oled displays" IEEE transactions on electron devices, vol. 48, No. 5, dated May 2001 (7 pages).

Vygranenko: "Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition"; dated 2009.

Wang: "Indium oxides by reactive ion beam assisted evaporation: From material study to device application"; dated Mar. 2009 (6 pages).

Yi He, "Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays", IEEE Electron Device Letters, vol. 21, No. 12, Dec. 2000, pp. 590-592.

Yu, Jennifer: "Improve OLED Technology for Display", Ph.D. Dissertation, Massachusetts Institute of Technology, Sep. 2008 (151 pages).

International Search Report for Application No. PCT/IB2014/058244, Canadian Intellectual Property Office, dated Apr. 11, 2014; (6 pages).

International Search Report for Application No. PCT/IB2014/059753, Canadian Intellectual Property Office, dated Jun. 23, 2014; (6 pages).

Written Opinion for Application No. PCT/IB2014/059753, Canadian Intellectual Property Office, dated Jun. 12, 2014 (6 pages). International Search Report for Application No. PCT/IB2014/

International Search Report for Application No. PC1/IB2014/060879, Canadian Intellectual Property Office, dated Jul. 17, 2014 (3 pages).

Extended European Search Report for Application No. EP 14158051. 4, dated Jul. 29, 2014, (4 pages).

Office Action in Chinese Patent Invention No. 201180008188.9 dated Jun. 4, 2014 (17 pages) (w/English translation).

International Search Report for Application No. PCT/IB/2014/066932 dated Mar. 24, 2015.

Written Opinion for Application No. PCT/IB/2014/066932 dated Mar. 24, 2015.

Extended European Search Report for Application No. EP 11866291. 5, dated Mar. 9, 2015, (9 pages).

(56) **References Cited**

OTHER PUBLICATIONS

Extended European Search Report for Application No. EP 14181848.

4, dated Mar. 5, 2015, (8 pages).
Office Action in Chinese Patent Invention No. 201280022957.5 dated Jun. 26, 2015 (7 pages).

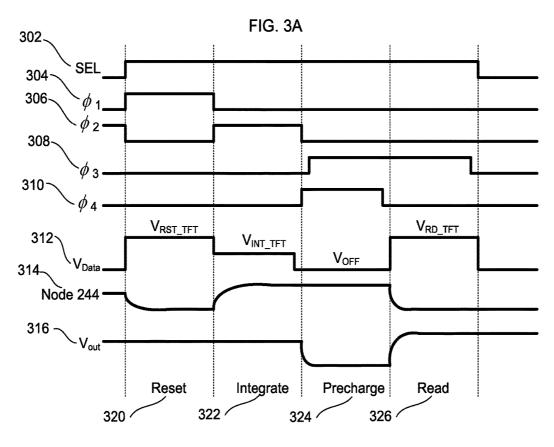
Extended European Search Report for Application No. EP 13794695. 0, dated Dec. 18, 2015, (9 pages).

Extended European Search Report for Application No. EP 16157746.

5, dated Apr. 8, 2016, (11 pages). Extended European Search Report for Application No. EP 16192749.

6, dated Dec. 15, 2016, (17 pages).

International Search Report for Application No. PCT/IB/2016/ 054763 dated Nov. 25, 2016 (4 pages).


Written Opinion for Application No. PCT/IB/2016/054763 dated Nov. 25, 2016 (9 pages).

^{*} cited by examiner

FIG. 1

FIG. 2 230 200 210 212 202 204 228 224 220 244/ 208 206 262 VDD 254 252 SEL S4 S2 ϕ 3 V_{OUT} S1 V_{Data} 226 256 222 240 264 **VCM** 242 250 260 232 258

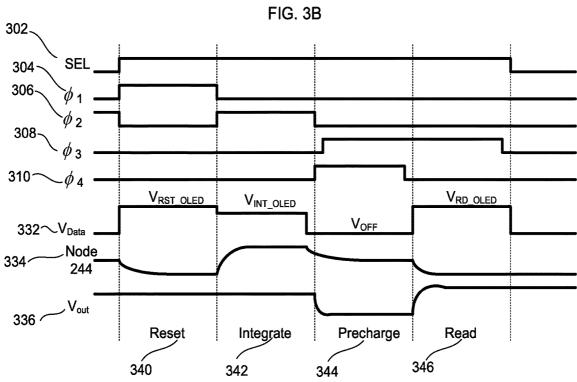
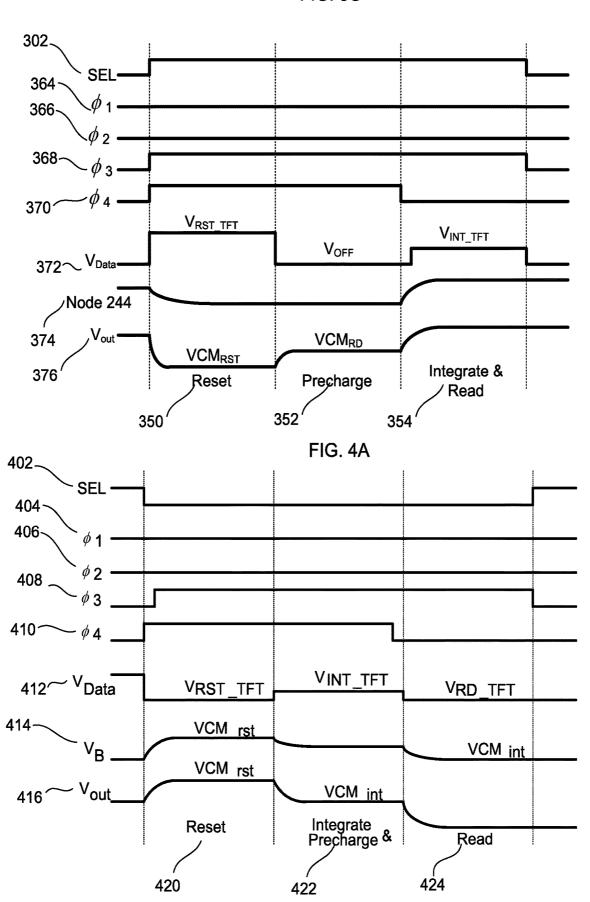
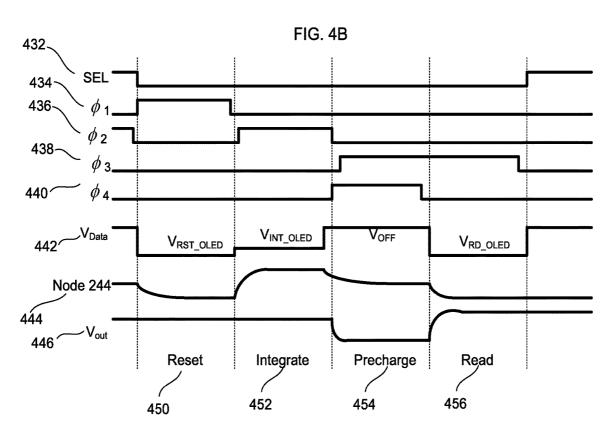




FIG. 3C

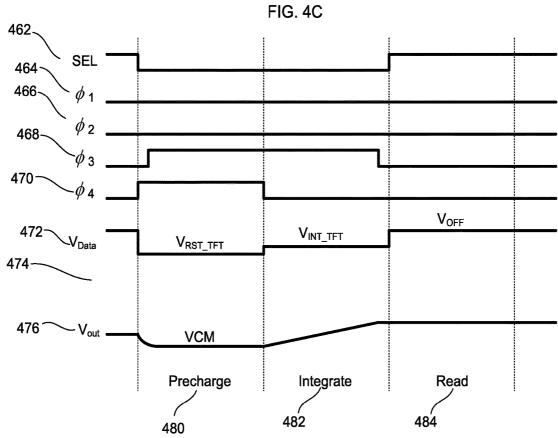


FIG. 4D 489n. SEL(n) 489p _ SEL(p) 490 -- Ø 1 491-· Ø 2 492 -**Ø** 3 493 494n $V_{\text{ON_nTFT}}$ $V_{Data}(n)$ 494p $V_{Data}(p)$ V_{ON_pTFT} 495 -VCM_{OLED} Node B 496 - VCM_{OLED} V_{out} Precharge Integrate Read 487 486 488

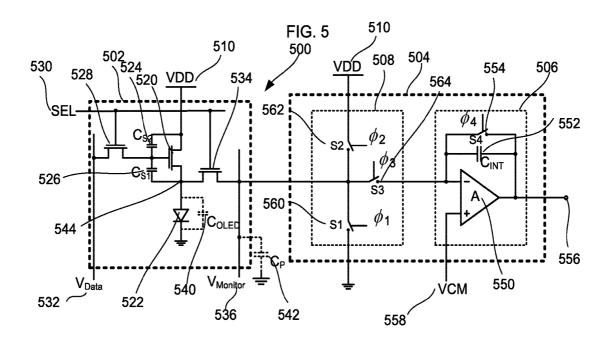
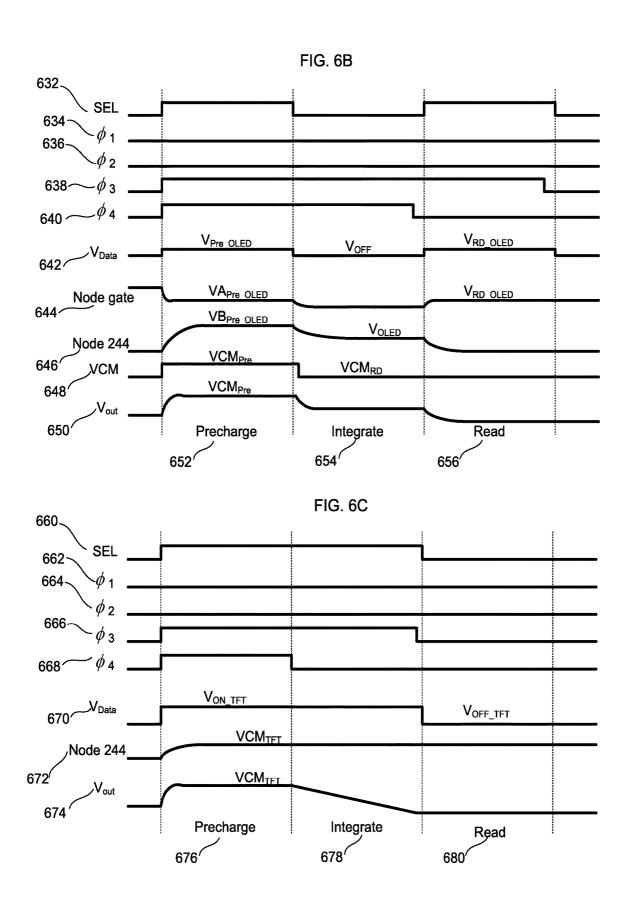



FIG. 6A 602 SEL 604 606- ϕ_2 608 ϕ з ϕ 4 610 V_{RD_TFT} V_{RST_TFT} $612{\sim}\,V_{Data}$ $V_{\text{OFF}} \\$ V_A Node gate V_{RD_TFT} VA_{RST_TFT} $V_{A}-V_{th}$ Node 544 616 614 VB_{RST_TFT} **VCM**_{TFT} V_{out} 618 Integrate Precharge Read 622 620 624

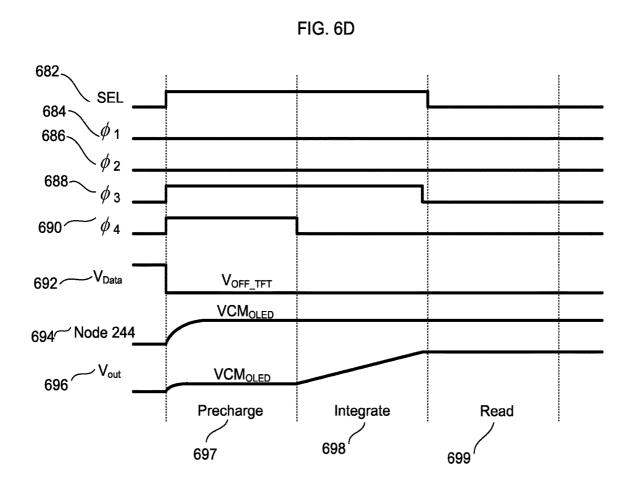
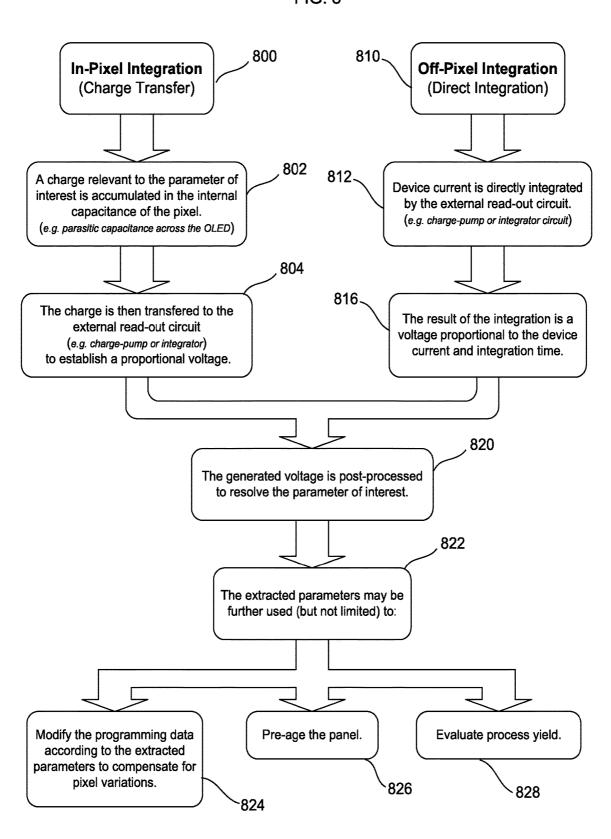
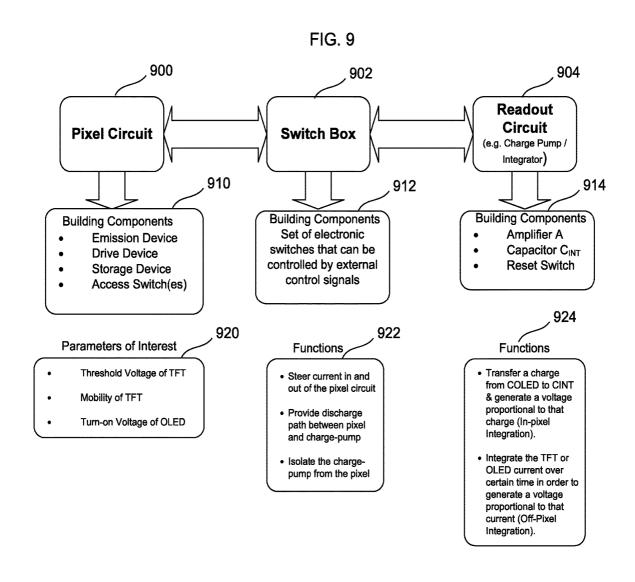




FIG. 7 700-**Select** The SEL Line is Activated 702~ Reset C_{OLED} is Discharged 704 Integrate C_{OLED} is Charged to V_{Data} - V_{th} 706 **Precharge** C_P is Precharged to VCM 708-Read Charge in COLED is Read by Charge Pump 710-**Deselect** The SEL Line is Deactivated

FIG. 8

1

SYSTEM AND METHODS FOR EXTRACTION OF THRESHOLD AND MOBILITY PARAMETERS IN AMOLED DISPLAYS

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of, and claims priority to U.S. patent application Ser. No. 15/708,361, filed Sep. 19, 2017, now allowed, which is a continuation of U.S. patent application Ser. No. 15/420,503, filed Jan. 31, 2017, now U.S. Pat. No. 9,799,248, which is a continuation of U.S. patent application Ser. No. 15/154,445, filed May 13, 2016, now U.S. Pat. No. 9,589,490, which is a continuation of U.S. patent application Ser. No. 14/680,554, filed Apr. 7, 2015, now U.S. Pat. No. 9,355,584, which is a continuation of U.S. patent application Ser. No. 13/950,795, filed Jul. 25, 2013, now U.S. Pat. No. 9,093,029, which is a continuation of U.S. patent application Ser. No. 13/112,468, filed May 20, 2011, now U.S. Pat. No. 8,476,217, each of which is hereby incorporated by reference herein in its entirety.

COPYRIGHT

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent disclosure, as it ³⁰ appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.

FIELD OF THE INVENTION

The present invention generally relates to active matrix organic light emitting device (AMOLED) displays, and particularly extracting threshold and mobility factors from 40 the pixel drivers for such displays.

BACKGROUND

Currently, active matrix organic light emitting device ("AMOLED") displays are being introduced. The advantages of such displays include lower power consumption, manufacturing flexibility and faster refresh rate over conventional liquid crystal displays. In contrast to conventional liquid crystal displays, there is no backlighting in an AMOLED display, and thus each pixel consists of different colored OLEDs emitting light independently. The OLEDs emit light based on current supplied through a drive transistor controlled by a programming voltage. The power consumed in each pixel has a relation with the magnitude of 55 the generated light in that pixel.

The quality of output in an OLED based pixel is affected by the properties of the drive transistor, which is typically fabricated from materials including but not limited to amorphous silicon, polysilicon, or metal oxide, as well as the 60 OLED itself. In particular, threshold voltage and mobility of the drive transistor tend to change as the pixel ages. In order to maintain image quality, changes in these parameters must be compensated for by adjusting the programming voltage. In order to do so, such parameters must be extracted from the 65 driver circuit. The addition of components to extract such parameters in a simple driver circuit requires more space on

2

a display substrate for the drive circuitry and thereby reduces the amount of aperture or area of light emission from the OLED.

When biased in saturation, the I-V characteristic of a thin film drive transistor depends on mobility and threshold voltage which are a function of the materials used to fabricate the transistor. Thus different thin film transistor devices implemented across the display panel may demonstrate non-uniform behavior due to aging and process variations in mobility and threshold voltage. Accordingly, for a constant voltage, each device may have a different drain current. An extreme example may be where one device could have low threshold-voltage and low mobility compared to a second device with high threshold-voltage and high mobility.

Thus with very few electronic components available to maintain a desired aperture, extraction of non-uniformity parameters (i.e. threshold voltage, V_{th} , and mobility, μ) of the drive TFT and the OLED becomes challenging. It would be desirable to extract such parameters in a driver circuit for an OLED pixel with as few components as possible to maximize pixel aperture.

SUMMARY

One example disclosed is a data extraction system for an organic light emitting device (OLED) based display. The system includes a pixel circuit including an organic light emitting device, a drive device to provide a programmable drive current to the light emitting device, a programming input to provide a programming signal, and a storage device to store the programming signal. A charge-pump amplifier has a current input and a voltage output. The charge-pump amplifier includes an operational amplifier in negative feed-35 back configuration. The feedback is provided by a capacitor connected between the output and the inverting input of the operational amplifier. A common-mode voltage source drives the non-inverting input of the operational amplifier. An electronic switch is coupled across the capacitor to reset the capacitor. A switch module including the input is coupled to the output of the pixel circuit and an output is coupled to the input of the charge-pump amplifier. The switch module includes a plurality of electronic switches that may be controlled by external control signals to steer current in and out of the pixel circuit, provide a discharge path between the pixel circuit and the charge-pump amplifier and isolate the charge-pump amplifier from the pixel circuit. A controller is coupled to the pixel circuit, charge-pump amplifier and the switch module. The controller controls input signals to the pixel circuit, charge-pump amplifier and switch module in a predetermined sequence to produce an output voltage value which is a function of a parameter of the pixel circuit. The sequence includes providing a program voltage to the programming input to either pre-charge an internal capacitance of the pixel circuit to a charge level and transfer the charge to the charge-pump amplifier via the switch module to generate the output voltage value or provide a current from the pixel circuit to the charge-pump amplifier via the switch module to produce the output voltage value by integration over a certain period of time.

Another example is a method of extracting a circuit parameter from a pixel circuit including an organic light emitting device, a drive device to provide a programmable drive current to the light emitting device, a programming input, and a storage device to store a programming signal. A predetermined program voltage is provided to the programming voltage input. A capacitance of the pixel circuit is

charged to a charge level or a current from the pixel circuit. The pixel circuit is coupled to a charge-pump amplifier. The charge-pump amplifier is isolated from the pixel circuit to provide a voltage output either proportional to the charge level or to integrate the current from the pixel circuit. The voltage output of the charge-pump amplifier is read. At least one pixel circuit parameter is determined from the voltage output of the charge-pump amplifier.

Another example is a data extraction system for an organic light emitting device (OLED) based display. The system includes a pixel circuit having a drive transistor, an organic light emitting device, and a programming input coupled to the gate of the drive transistor. The drive transistor has a source or a drain coupled to the OLED. A charge-pump amplifier has an input and an integrated voltage output. A switch module includes an input coupled to the output of the pixel circuit and an output coupled to the input of the charge-pump amplifier. The switch module includes switches to steer current in and out of the pixel circuit, 20 provide a discharge path between the pixel circuit and the charge-pump amplifier and isolate the charge-pump amplifier from the pixel circuit. A controller is coupled to the pixel circuit, charge-pump amplifier and the switch module. The controller controls voltage inputs to the pixel circuit, charge- 25 pump amplifier and switch module in a predetermined sequence to produce an output voltage value which is a function of a parameter of the pixel circuit. The sequence including providing a program voltage to the programming input to either pre-charge a capacitance of the pixel circuit to a charge level, transfer the charge to the charge-pump amplifier via the switch module to generate the output voltage value or provide a current from the pixel circuit to the charge-pump amplifier via the switch module to produce $_{35}$ the output voltage value by integration.

The foregoing and additional aspects and embodiments of the present invention will be apparent to those of ordinary skill in the art in view of the detailed description of various embodiments and/or aspects, which is made with reference 40 to the drawings, a brief description of which is provided next.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings.

FIG. 1 is a block diagram of an AMOLED display with compensation control;

FIG. 2 is a circuit diagram of a data extraction circuit for a two-transistor pixel in the AMOLED display in FIG. 1;

FIG. 3A is a signal timing diagram of the signals to the data extraction circuit to extract the threshold voltage and mobility of an n-type drive transistor in FIG. 2;

FIG. 3B is a signal timing diagram of the signals to the data extraction circuit to extract the characteristic voltage of the OLED in FIG. 2 with an n-type drive transistor;

FIG. 3C is a signal timing diagram of the signals to the data extraction circuit for a direct read to extract the threshold voltage of an n-type drive transistor in FIG. 2;

FIG. **4**A is a signal timing diagram of the signals to the data extraction circuit to extract the threshold voltage and mobility of a p-type drive transistor in FIG. **2**;

FIG. **4B** is a signal timing diagram of the signals to the 65 data extraction circuit to extract the characteristic voltage of the OLED in FIG. **2** with a p-type drive transistor;

4

FIG. 4C is a signal timing diagram of the signals to the data extraction circuit for a direct read to extract the threshold voltage of a p-type drive transistor in FIG. 2;

FIG. 4D is a signal timing diagram of the signals to the data extraction circuit for a direct read of the OLED turn-on voltage using either an n-type or p-type drive transistor in FIG. 2.

FIG. **5** is a circuit diagram of a data extraction circuit for a three-transistor drive circuit for a pixel in the AMOLED display in FIG. **1** for extraction of parameters;

FIG. 6A is a signal timing diagram of the signals to the data extraction circuit to extract the threshold voltage and mobility of the drive transistor in FIG. 5;

FIG. 6B is a signal timing diagram of the signals to the data extraction circuit to extract the characteristic voltage of the OLED in FIG. 5;

FIG. 6C is a signal timing diagram the signals to the data extraction circuit for a direct read to extract the threshold voltage of the drive transistor in FIG. 5;

FIG. 6D is a signal timing diagram of the signals to the data extraction circuit for a direct read to extract the characteristic voltage of the OLED in FIG. 5;

FIG. 7 is a flow diagram of the extraction cycle to readout the characteristics of the drive transistor and the OLED of a pixel circuit in an AMOLED display;

FIG. 8 is a flow diagram of different parameter extraction cycles and final applications; and

FIG. 9 is a block diagram and chart of the components of a data extraction system.

While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION

FIG. 1 is an electronic display system 100 having an active matrix area or pixel array 102 in which an nxm array of pixels 104 are arranged in a row and column configuration. For ease of illustration, only two rows and two columns are shown. External to the active matrix area of the pixel array 102 is a peripheral area 106 where peripheral circuitry for driving and controlling the pixel array 102 are disposed. The peripheral circuitry includes an address or gate driver circuit 108, a data or source driver circuit 110, a controller 112, and an optional supply voltage (e.g., Vdd) driver 114. The controller 112 controls the gate, source, and supply voltage drivers 108, 110, 114. The gate driver 108, under control of the controller 112, operates on address or select 55 lines SEL[i], SEL[i+1], and so forth, one for each row of pixels 104 in the pixel array 102. In pixel sharing configurations described below, the gate or address driver circuit 108 can also optionally operate on global select lines GSEL [j] and optionally/GSEL[j], which operate on multiple rows of pixels 104 in the pixel array 102, such as every two rows of pixels 104. The source driver circuit 110, under control of the controller 112, operates on voltage data lines Vdata[k], Vdata[k+1], and so forth, one for each column of pixels 104 in the pixel array 102. The voltage data lines carry voltage programming information to each pixel 104 indicative of the brightness of each light emitting device in the pixel 104. A storage element, such as a capacitor, in each pixel 104 stores

the voltage programming information until an emission or driving cycle turns on the light emitting device. The optional supply voltage driver 114, under control of the controller 112, controls a supply voltage (EL_Vdd) line, one for each row or column of pixels 104 in the pixel array 102.

The display system 100 further includes a current supply and readout circuit 120, which reads output data from data output lines, VD [k], VD [k+1], and so forth, one for each column of pixels 104 in the pixel array 102.

As is known, each pixel 104 in the display system 100 needs to be programmed with information indicating the brightness of the light emitting device in the pixel 104. A frame defines the time period that includes: (i) a programming cycle or phase during which each and every pixel in the display system 100 is programmed with a programming voltage indicative of a brightness; and (ii) a driving or emission cycle or phase during which each light emitting device in each pixel is turned on to emit light at a brightness commensurate with the programming voltage stored in a storage element. A frame is thus one of many still images that compose a complete moving picture displayed on the display system 100. There are at least schemes for programming and driving the pixels: row-by-row, or frame-byframe. In row-by-row programming, a row of pixels is programmed and then driven before the next row of pixels is programmed and driven. In frame-by-frame programming, all rows of pixels in the display system 100 are programmed first, and all rows of pixels are driven at once. Either scheme can employ a brief vertical blanking time at the beginning or end of each frame during which the pixels are neither programmed nor driven.

The components located outside of the pixel array 102 may be disposed in a peripheral area 106 around the pixel array 102 on the same physical substrate on which the pixel array 102 is disposed. These components include the gate driver 108, the source driver 110, the optional supply voltage driver 114, and a current supply and readout circuit 120. Alternately, some of the components in the peripheral area 106 may be disposed on the same substrate as the pixel array 102 while other components are disposed on a different substrate, or all of the components in the peripheral area can be disposed on a substrate different from the substrate on which the pixel array 102 is disposed. Together, the gate driver 108, the source driver 110, and the supply voltage driver 114 make up a display driver circuit. The display driver circuit in some configurations can include the gate driver 108 and the source driver 110 but not the supply voltage control 114.

When biased in saturation, the first order I-V characteristic of a metal oxide semiconductor (MOS) transistor (a thin film transistor in this case of interest) is modeled as:

$$I_D = \frac{1}{2}\mu C_{ox} \frac{W}{L} (V_{GS} - V_{th})^2$$

where I_D is the drain current and V_{GS} is the voltage difference applied between gate and source terminals of the transistor. The thin film transistor devices implemented 60 across the display system 100 demonstrate non-uniform behavior due to aging and process variations in mobility (μ) and threshold voltage (V_{th}). Accordingly, for a constant voltage difference applied between gate and source, V_{GS} , each transistor on the pixel matrix 102 may have a different 65 drain current based on a non-deterministic mobility and threshold voltage:

6

$$I_{D(i,j)} = f(\mu_{i,j}, V_{th i,j})$$

where i and j are the coordinates (row and column) of a pixel in an $n \times m$ array of pixels such as the array of pixels 102 in FIG. 1.

FIG. 2 shows a data extraction system 200 including a two-transistor (2T) driver circuit 202 and a readout circuit 204. The supply voltage control 114 is optional in a display system with 2T pixel circuit 104. The readout circuit 204 is part of the current supply and readout circuit 120 and gathers data from a column of pixels 104 as shown in FIG. 1. The readout circuit 204 includes a charge pump circuit 206 and a switch-box circuit 208. A voltage source 210 provides the supply voltage to the driver circuit 202 through the switchbox circuit 208. The charge-pump and switch-box circuits 206 and 208 are implemented on the top or bottom side of the array 102 such as in the voltage drive 114 and the current supply and readout circuit 120 in FIG. 1. This is achieved by either direct fabrication on the same substrate as the pixel array 102 or by bonding a microchip on the substrate or a flex as a hybrid solution.

The driver circuit 202 includes a drive transistor 220, an organic light emitting device 222, a drain storage capacitor 224, a source storage capacitor 226, and a select transistor 25 228. A supply line 212 provides the supply voltage and also a monitor path (for the readout circuit 204) to a column of driver circuits such as the driver circuit 202. A select line input 230 is coupled to the gate of the select transistor 228. A programming data input 232 is coupled to the gate of the drive transistor 220 through the select transistor 228. The drain of the drive transistor 220 is coupled to the supply voltage line 212 and the source of the drive transistor 220 is coupled to the OLED 222. The select transistor 228 controls the coupling of the programming input 230 to the gate of the drive transistor 220. The source storage capacitor 226 is coupled between the gate and the source of the drive transistor 220. The drain storage capacitor 224 is coupled between the gate and the drain of the drive transistor 220. The OLED 222 has a parasitic capacitance that is modeled as a capacitor 240. The supply voltage line 212 also has a parasitic capacitance that is modeled as a capacitor 242. The drive transistor 220 in this example is a thin film transistor that is fabricated from amorphous silicon. Of course other materials such as polysilicon or metal oxide may be used. A node 244 is the circuit node where the source of the drive transistor 220 and the anode of the OLED 222 are coupled together. In this example, the drive transistor 220 is an n-type transistor. The system 200 may be used with a p-type drive transistor in place of the n-type drive transistor 220 as will be explained below.

The readout circuit 204 includes the charge-pump circuit 206 and the switch-box circuit 208. The charge-pump circuit 206 includes an amplifier 250 having a positive and negative input. The negative input of the amplifier 250 is coupled to a capacitor 252 (C_{int}) in parallel with a switch 254 in a negative feedback loop to an output 256 of the amplifier 250. The switch 254 (S4) is utilized to discharge the capacitor 252 C_{int} during the pre-charge phase. The positive input of the amplifier 250 is coupled to a common mode voltage input 258 (VCM). The output 256 of the amplifier 250 is indicative of various extracted parameters of the drive transistor 220 and OLED 222 as will be explained below.

The switch-box circuit 208 includes several switches 260, 262 and 264 (S1, S2 and S3) to steer current to and from the pixel driver circuit 202. The switch 260 (S1) is used during the reset phase to provide a discharge path to ground. The switch 262 (S2) provides the supply connection during

normal operation of the pixel 104 and also during the integration phase of readout. The switch 264 (S3) is used to isolate the charge-pump circuit 206 from the supply line voltage 212 (VD).

The general readout concept for the two transistor pixel 5 driver circuit 202 for each of the pixels 104, as shown in FIG. 2, comes from the fact that the charge stored on the parasitic capacitance represented by the capacitor 240 across the OLED 222 has useful information of the threshold voltage and mobility of the drive transistor 220 and the 10 turn-on voltage of the OLED 222. The extraction of such parameters may be used for various applications. For example, such parameters may be used to modify the programming data for the pixels 104 to compensate for pixel variations and maintain image quality. Such parameters may also be used to evaluate the process yield for the fabrication of the pixel array 102.

Assuming that the capacitor 240 (C_{OLED}) is initially discharged, it takes some time for the capacitor **240** (C_{OLED}) to charge up to a voltage level that turns the drive transistor 220 off. This voltage level is a function of the threshold voltage of the drive transistor 220. The voltage applied to the programming data input 232 (V_{Data}) must be low enough such that the settled voltage of the OLED 222 (V_{OLED}) is 25 less than the turn-on threshold voltage of the OLED 222 itself. In this condition, V_{Data} – V_{OLED} is a linear function of the threshold voltage (V_{th}) of the drive transistor 220. In order to extract the mobility of a thin film transistor device such as the drive transistor 220, the transient settling of such devices, which is a function of both the threshold voltage and mobility, is considered. Assuming that the threshold voltage deviation among the TFT devices such as the drive transistor 220 is compensated, the voltage of the node 244 sampled at a constant interval after the beginning of inte- 35 gration is a function of mobility only of the TFT device such as the drive transistor 220 of interest.

FIG. 3A-3C are signal timing diagrams of the control signals applied to the components in FIG. 2 to extract parameters such as voltage threshold and mobility from the 40 drive transistor 220 and the turn on voltage of the OLED 222 in the drive circuit 200 assuming the drive transistor 220 is an n-type transistor. Such control signals could be applied by the controller 112 to the source driver 110, the gate driver 108 and the current supply and readout circuit 120 in FIG. 45 1. FIG. 3A is a timing diagram showing the signals applied to the extraction circuit 200 to extract the threshold voltage and mobility from the drive transistor 220. FIG. 3A includes a signal 302 for the select input 230 in FIG. 2, a signal 304 (ϕ_1) to the switch **260**, a signal **306** (ϕ_2) for the switch **262**, a signal 308 (ϕ_3) for the switch 264, a signal 310 (ϕ_4) for the switch 254, a programming voltage signal 312 for the programming data input 232 in FIG. 2, a voltage 314 of the node 244 in FIG. 2 and an output voltage signal 316 for the output 256 of the amplifier 250 in FIG. 2.

FIG. 3A shows the four phases of the readout process, a reset phase 320, an integration phase 322, a pre-charge phase 324 and a read phase 326. The process starts by activating a high select signal 302 to the select input 230. The select signal 302 will be kept high throughout the readout process 60 as shown in FIG. 3A.

During the reset phase 320, the input signal 304 (ϕ_1) to the switch 260 is set high in order to provide a discharge path to ground. The signals 306, 308 and 310 (ϕ_2, ϕ_3, ϕ_4) to the switches 262, 264 and 250 are kept low in this phase. A high 65 enough voltage level (V_{RST_TFT}) is applied to the programming data input 232 (V_{Data}) to maximize the current flow

8

through the drive transistor 220. Consequently, the voltage at the node 244 in FIG. 2 is discharged to ground to get ready for the next cycle.

During the integration phase 322, the signal 304 (ϕ_2) to the switch 262 stays high which provides a charging path from the voltage source 210 through the switch 262. The signals 304, 308 and 310 (ϕ_1 , ϕ_3 , ϕ_4) to the switches 260, 264 and 250 are kept low in this phase. The programming voltage input 232 (V_{Data}) is set to a voltage level (V_{INT_TFT}) such that once the capacitor 240 (C_{oled}) is fully charged, the voltage at the node 244 is less than the turn-on voltage of the OLED 222. This condition will minimize any interference from the OLED 222 during the reading of the drive transistor 220. Right before the end of integration time, the signal 312 to the programming voltage input 232 (V_{Data}) is lowered to V_{OFF} in order to isolate the charge on the capacitor 240 (C_{oled}) from the rest of the circuit.

When the integration time is long enough, the charge stored on capacitor **240** (C_{oled}) will be a function of the threshold voltage of the drive transistor **220**. For a shortened integration time, the voltage at the node **244** will experience an incomplete settling and the stored charge on the capacitor **240** (C_{oled}) will be a function of both the threshold voltage and mobility of the drive transistor **220**. Accordingly, it is feasible to extract both parameters by taking two separate readings with short and long integration phases.

During the pre-charge phase 324, the signals 304 and 306 (ϕ_1,ϕ_2) to switches 260 and 262 are set low. Once the input signal 310 (ϕ_4) to the switch 254 is set high, the amplifier 250 is set in a unity feedback configuration. In order to protect the output stage of the amplifier 250 against short-circuit current from the supply voltage 210, the signal 308 (ϕ_3) to the switch 264 goes high when the signal 306 (ϕ_2) to the switch 262 is set low. When the switch 264 is closed, the parasitic capacitance 242 of the supply line is precharged to the common mode voltage, VCM. The common mode voltage, VCM, is a voltage level which must be lower than the ON voltage of the OLED 222. Right before the end of pre-charge phase, the signal 310 (ϕ_4) to the switch 254 is set low to prepare the charge pump amplifier 250 for the read cycle.

During the read phase 336, the signals 304, 306 and 310 (ϕ_1, ϕ_2, ϕ_4) to the switches 260, 262 and 254 are set low. The signal 308 (ϕ_3) to the switch 264 is kept high to provide a charge transfer path from the drive circuit 202 to the charge-pump amplifier 250. A high enough voltage 312 (V_{RA_TFT}) is applied to the programming voltage input 232 (V_{Data}) to minimize the channel resistance of the drive transistor 220. If the integration cycle is long enough, the accumulated charge on the capacitor 252 (C_{int}) is not a function of integration time. Accordingly, the output voltage of the charge-pump amplifier 250 in this case is equal to:

$$V_{out} = -\frac{C_{oled}}{C_{int}}(V_{Data} - V_{th})$$

For a shortened integration time, the accumulated charge on the capacitor **252** (C_{int}) is given by:

$$Q_{int} = \int_{-T_{int}}^{T_{int}} i_D(V_{GS}, V_{th}, \mu) \cdot dt$$

Consequently, the output voltage 256 of the charge-pump amplifier 250 at the end of read cycle equals:

Hence, the threshold voltage and the mobility of the drive transistor 220 may be extracted by reading the output voltage 256 of the amplifier 250 in the middle and at the end of the read phase 326.

FIG. 3B is a timing diagram for the reading process of the threshold turn-on voltage parameter of the OLED 222 in FIG. 2. The reading process of the OLED 222 also includes four phases, a reset phase 340, an integration phase 342, a pre-charge phase 344 and a read phase 346. Just like the reading process for the drive transistor 220 in FIG. 3A, the reading process for OLED starts by activating the select input 230 with a high select signal 302. The timing of the signals 304, 306, 308, and 310 (ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4) to the switches 260, 262, 264 and 254 is the same as the read process for the drive transistor 220 in FIG. 3A. A programming signal 332 for the programming input 232, a signal 334 for the node 244 and an output signal 336 for the output of the amplifier 250 are different from the signals in FIG. 3A.

During the reset phase 340, a high enough voltage level 332 (V_{RST_OLED}) is applied to the programming data input 232 (V_{Data}) to maximize the current flow through the drive transistor 220. Consequently, the voltage at the node 244 in FIG. 2 is discharged to ground through the switch 260 to get ready for the next cycle.

During the integration phase 342, the signal 306 (ϕ_2) to the switch 262 stays high which provides a charging path from the voltage source 210 through the switch 262. The programming voltage input 232 (V_{Data}) is set to a voltage level 332 (V_{INT_OLED}) such that once the capacitor 240 (C_{oled}) is fully charged, the voltage at the node 244 is greater than the turn-on voltage of the OLED 222. In this case, by the end of the integration phase 342, the drive transistor 220 is driving a constant current through the OLED 222.

During the pre-charge phase **344**, the drive transistor **220** is turned off by the signal **332** to the programming input **232**. The capacitor **240** (C_{oled}) is allowed to discharge until it reaches the turn-on voltage of OLED **222** by the end of the pre-charge phase **344**.

During the read phase 346, a high enough voltage 332 (V_{RD_OLED}) is applied to the programming voltage input 232 (V_{Data}) to minimize the channel resistance of the drive transistor 220. If the pre-charge phase is long enough, the settled voltage across the capacitor 252 (C_{int}) will not be a function of pre-charge time. Consequently, the output voltage 256 of the charge-pump amplifier 250 at the end of the read phase is given by:

$$V_{out} = -\frac{C_{oled}}{C_{int}} \cdot V_{ON,oled}$$

The signal 308 (ϕ_3) to the switch 264 is kept high to provide a charge transfer path from the drive circuit 202 to the charge-pump amplifier 250. Thus the output voltage signal 336 may be used to determine the turn-on voltage of the 60 OLED 220.

FIG. 3C is a timing diagram for the direct reading of the drive transistor 220 using the extraction circuit 200 in FIG. 2. The direct reading process has a reset phase 350, a pre-charge phase 352 and an integrate/read phase 354. The readout process is initiated by activating the select input 230 in FIG. 2. The select signal 302 to the select input 230 is kept

high throughout the readout process as shown in FIG. 3C. The signals 364 and 366 (ϕ_1, ϕ_2) for the switches 260 and 262 are inactive in this readout process.

During the reset phase 350, the signals 368 and 370 (ϕ_3 , ϕ_4) for the switches 264 and 254 are set high in order to provide a discharge path to virtual ground. A high enough voltage 372 (V_{RST_TFT}) is applied to the programming input 232 (V_{Data}) to maximize the current flow through the drive transistor 220. Consequently, the node 244 is discharged to the common-mode voltage 374 (VCM_{RST}) to get ready for the next cycle.

During the pre-charge phase **354**, the drive transistor **220** is turned off by applying an off voltage **372** (V_{OFF}) to the programming input **232** in FIG. **2**. The common-mode voltage input **258** to the positive input of the amplifier **250** is raised to VCM_{RD} in order to precharge the line capacitance. At the end of the pre-charge phase **354**, the signal **370** (ϕ_4) to the switch **254** is turned off to prepare the charge-pump amplifier **250** for the next cycle.

At the beginning of the read/integrate phase **356**, the programming voltage input **232** (V_{Data}) is raised to V_{INT_TFT} **372** to turn the drive transistor **220** on. The capacitor **240** (C_{OLED}) starts to accumulate the charge until V_{Data} minus the voltage at the node **244** is equal to the threshold voltage of the drive transistor **220**. In the meantime, a proportional charge is accumulated in the capacitor **252** (C_{INT}). Accordingly, at the end of the read cycle **356**, the output voltage **376** at the output **256** of the amplifier **250** is a function of the threshold voltage which is given by:

$$V_{out} = \frac{C_{oled}}{C_{int}} \cdot (V_{Data} - V_{th})$$

As indicated by the above equation, in the case of the direct reading, the output voltage has a positive polarity. Thus, the threshold voltage of the drive transistor 220 may be determined by the output voltage of the amplifier 250.

As explained above, the drive transistor 220 in FIG. 2 may be a p-type transistor. FIG. 4A-4C are signal timing diagrams of the signals applied to the components in FIG. 2 to extract voltage threshold and mobility from the drive transistor 220 and the OLED 222 when the drive transistor 220 is a p-type transistor. In the example where the drive transistor 220 is a p-type transistor, the source of the drive transistor 220 is coupled to the supply line 212 (VD) and the drain of the drive transistor 220 is coupled to the OLED 222. FIG. 4A is a timing diagram showing the signals applied to the extraction circuit 200 to extract the threshold voltage and mobility from the drive transistor 220 when the drive transistor 220 is a p-type transistor. FIG. 4A shows voltage signals 402-416 for the select input 232, the switches 260, 262, 264 and 254, the programming data input 230, the voltage at the node 244 and the output voltage 256 in FIG. 2. The data extraction is performed in three phases, a reset phase 420, an integrate/pre-charge phase 422, and a read phase **424**.

As shown in FIG. 4A, the select signal 402 is active low and kept low throughout the readout phases 420, 422 and 424. Throughout the readout process, the signals 404 and 406 (ϕ_1 , ϕ_2) to the switches 260 and 262 are kept low (inactive). During the reset phase, the signals 408 and 410 (ϕ_3 , ϕ_4) at the switches 264 and 254 are set to high in order to charge the node 244 to a reset common mode voltage level VCM_{rst}. The common-mode voltage input 258 on the charge-pump input 258 (VCM_{rst}) should be low enough to

keep the OLED **222** off. The programming data input **232** V_{Data} is set to a low enough value **412** (V_{RST_TFT}) to provide maximum charging current through the driver transistor **220**.

During the integrate/pre-charge phase 422, the common-mode voltage on the common voltage input 258 is reduced to VCM_{int} and the programming input 232 (V_{Data}) is increased to a level 412 (V_{INT_TFT}) such that the drive transistor 220 will conduct in the reverse direction. If the allocated time for this phase is long enough, the voltage at the node 244 will decline until the gate to source voltage of the drive transistor 220 reaches the threshold voltage of the drive transistor 220. Before the end of this cycle, the signal 410 (ϕ_4) to the switch 254 goes low in order to prepare the charge-pump amplifier 250 for the read phase 424.

The read phase 424 is initiated by decreasing the signal 412 at the programming input 232 (V_{Data}) to V_{RD_TFT} so as to turn the drive transistor 220 on. The charge stored on the capacitor 240 (C_{OLED}) is now transferred to the capacitor 254 (C_{INT}). At the end of the read phase 424, the signal 408 (ϕ_3) to the switch 264 is set to low in order to isolate the charge-pump amplifier 250 from the drive circuit 202. The output voltage signal 416 V_{out} from the amplifier output 256 is now a function of the threshold voltage of the drive transistor 220 given by:

$$V_{out} = -\frac{C_{oled}}{C_{int}} \cdot (V_{INT_TFT} - V_{th})$$

FIG. 4B is a timing diagram for the in-pixel extraction of the threshold voltage of the OLED 222 in FIG. 2 assuming that the drive transistor 220 is a p-type transistor. The extraction process is very similar to the timing of signals to the extraction circuit 200 for an n-type drive transistor in 35 FIG. 3A. FIG. 4B shows voltage signals 432-446 for the select input 230, the switches 260, 262, 264 and 254, the programming data input 232, the voltage at the node 244 and the amplifier output 256 in FIG. 2. The extraction process includes a reset phase 450, an integration phase 452, a 40 pre-charge phase 454 and a read phase 456. The major difference in this readout cycle in comparison to the readout cycle in FIG. 4A is the voltage levels of the signal 442 to the programming data input 232 (V_{Data}) that are applied to the driver circuit 210 in each readout phase. For a p-type thin 45 film transistor that may be used for the drive transistor 220, the select signal 430 to the select input 232 is active low. The select input 232 is kept low throughout the readout process as shown in FIG. 4B.

The readout process starts by first resetting the capacitor 50 **240** (C_{OLED}) in the reset phase **450**. The signal **434** (ϕ_1) to the switch **260** is set high to provide a discharge path to ground. The signal **442** to the programming input **232** (V_{Data}) is lowered to V_{RST_OLED} in order to turn the drive transistor **220** on.

In the integrate phase 452, the signals 434 and 436 (ϕ_1,ϕ_2) to the switches 260 and 262 are set to off and on states respectively, to provide a charging path to the OLED 222. The capacitor 240 (C_{OLED}) is allowed to charge until the voltage 444 at node 244 goes beyond the threshold voltage of the OLED 222 to turn it on. Before the end of the integration phase 452, the voltage signal 442 to the programming input 232 (V_{Data}) is raised to V_{OFF} to turn the drive transistor 220 off.

During the pre-charge phase 454, the accumulated charge on the capacitor 240 (C_{OLED}) is discharged into the OLED 222 until the voltage 444 at the node 244 reaches the

12

threshold voltage of the OLED 222. Also, in the pre-charge phase 454, the signals 434 and 436 (ϕ_1, ϕ_2) to the switches 260 and 262 are turned off while the signals 438 and 440 (ϕ_3, ϕ_4) to the switches 264 and 254 are set on. This provides the condition for the amplifier 250 to precharge the supply line 212 (VD) to the common mode voltage input 258 (VCM) provided at the positive input of the amplifier 250. At the end of the pre-charge phase, the signal 430 (ϕ_4) to the switch 254 is turned off to prepare the charge-pump amplifier 250 for the read phase 456.

The read phase 456 is initiated by turning the drive transistor 220 on when the voltage 442 to the programming input 232 (V_{Data}) is lowered to V_{RD_OLED} . The charge stored on the capacitor 240 (C_{OLED}) is now transferred to the capacitor 254 (C_{INT}) which builds up the output voltage 446 at the output 256 of the amplifier 250 as a function of the threshold voltage of the OLED 220.

FIG. 4C is a signal timing diagram for the direct extraction of the threshold voltage of the drive transistor 220 in the extraction system 200 in FIG. 2 when the drive transistor 220 is a p-type transistor. FIG. 4C shows voltage signals 462-476 for the select input 230, the switches 260, 262, 264 and 254, the programming data input 232, the voltage at the node 244 and the output voltage 256 in FIG. 2. The extraction process includes a pre-charge phase 480 and an integration phase 482. However, in the timing diagram in FIG. 4C, a dedicated final read phase 484 is illustrated which may be eliminated if the output of charge-pump amplifier 250 is sampled at the end of the integrate phase 482.

The extraction process is initiated by simultaneous precharging of the drain storage capacitor **224**, the source storage capacitor **226**, the capacitor **240** (C_{OLED}) and the capacitor **242** in FIG. **2**. For this purpose, the signals **462**, **468** and **470** to the select line input **230** and the switches **264** and **254** are activated as shown in FIG. **4**C. Throughout the readout process, the signals **404** and **406** (ϕ_1 , ϕ_2) to the switches **260** and **262** are kept low. The voltage level of common mode voltage input **258** (VCM) determines the voltage on the supply line **212** and hence the voltage at the node **244**. The common mode voltage (VCM) should be low enough such that the OLED **222** does not turn on. The voltage **472** to the programming input **232** (V_{Data}) is set to a level (V_{RST_TFT}) low enough to turn the transistor **220** on.

At the beginning of the integrate phase 482, the signal 470 (ϕ_4) to the switch 254 is turned off in order to allow the charge-pump amplifier 250 to integrate the current through the drive transistor 220. The output voltage 256 of the charge-pump amplifier 250 will incline at a constant rate which is a function of the threshold voltage of the drive transistor 220 and its gate-to-source voltage. Before the end of the integrate phase 482, the signal 468 (ϕ_3) to the switch 264 is turned off to isolate the charge-pump amplifier 250 from the driver circuit 220. Accordingly, the output voltage 256 of the amplifier 250 is given by:

$$V_{out} = I_{TFT} \cdot \frac{T_{int}}{C_{int}}$$

where I_{TFT} is the drain current of the drive transistor 220 which is a function of the mobility and $(V_{CM}-V_{Data}-|V_{th}|)$. T_{int} is the length of the integration time. In the optional read phase 484, the signal 468 (ϕ_3) to the switch 264 is kept low to isolate the charge-pump amplifier 250 from the driver circuit 202. The output voltage 256, which is a function of

the mobility and threshold voltage of the drive transistor 220, may be sampled any time during the read phase 484.

FIG. 4D is a timing diagram for the direct reading of the OLED 222 in FIG. 2. When the drive transistor 220 is turned on with a high enough gate-to-source voltage it may be utilized as an analog switch to access the anode terminal of the OLED 222. In this case, the voltage at the node 244 is essentially equal to the voltage on the supply line 212 (VD). Accordingly, the drive current through the drive transistor 220 will only be a function of the turn-on voltage of the OLED 222 and the voltage that is set on the supply line 212. The drive current may be provided by the charge-pump amplifier 250. When integrated over a certain time period, the output voltage 256 of the integrator circuit 206 is a measure of how much the OLED 222 has aged.

FIG. 4D is a timing diagram showing the signals applied to the extraction circuit 200 to extract the turn-on voltage from the OLED 222 via a direct read. FIG. 4D shows the three phases of the readout process, a pre-charge phase 486, an integrate phase 487 and a read phase 488. FIG. 4D includes a signal 489n or 489p for the select input 230 in 20 FIG. 2, a signal 490 (ϕ_1) to the switch 260, a signal 491 (ϕ_2) for the switch 262, a signal 492 (ϕ_3) for the switch 264, a signal 493 (ϕ_4) for the switch 254, a programming voltage signal 494n or 494p for the programming data input 232 in FIG. 2, a voltage 495 of the node 244 in FIG. 2 and an output voltage signal 496 for the output 256 of the amplifier 250 in FIG. 2.

The process starts by activating the select signal corresponding to the desired row of pixels in array 102. As illustrated in FIG. 4D, the select signal 489n is active high for an n-type select transistor and active low for a p-type select transistor. A high select signal 489n is applied to the select input 230 in the case of an n-type drive transistor. A low signal 489p is applied to the select input 230 in the case of a p-type drive transistor for the drive transistor 220.

The select signal **489**n or **489**p will be kept active during ³⁵ the pre-charge and integrate cycles 486 and 487. The ϕ_1 and ϕ_2 inputs 490 and 491 are inactive in this readout method. During the pre-charge cycle, the switch signals 492 ϕ_3 and **493** ϕ_4 are set high in order to provide a signal path such that the parasitic capacitance 242 of the supply line (C_p) and the $\ ^{40}$ voltage at the node 244 are pre-charged to the commonmode voltage (VCM $_{OLED}$) provided to the non-inverting terminal of the amplifier 250. A high enough drive voltage signal **494**n or **494**p (V_{ON_nTFT} or V_{ON_pTFT}) is applied to the data input **232** (V_{Data}) to operate the drive transistor **220** 45 as an analog switch. Consequently, the supply voltage 212 VD and the node 244 are pre-charged to the common-mode voltage (VCM_{OLED}) to get ready for the next cycle. At the beginning of the integrate phase 487, the switch input 493 ϕ_4 is turned off in order to allow the charge-pump module 206 to integrate the current of the OLED 222. The output voltage 496 of the charge-pump module 206 will incline at a constant rate which is a function of the turn-on voltage of the OLED 222 and the voltage 495 set on the node 244, i.e. VCM_{OLED}. Before the end of the integrate phase 487, the 55 switch signal 492 ϕ_3 is turned off to isolate the charge-pump module 206 from the pixel circuit 202. From this instant beyond, the output voltage is constant until the charge-pump module 206 is reset for another reading. When integrated over a certain time period, the output voltage of the integrator is given by:

$$V_{out} = I_{OLED} \frac{T_{int}}{C_{int}}$$

14

which is a measure of how much the OLED has aged. T_{int} in this equation is the time interval between the falling edge of the switch signal **493** (ϕ_4) to the falling edge of the switch signal **492** (ϕ_3).

Similar extraction processes of a two transistor type driver circuit such as that in FIG. 2 may be utilized to extract non-uniformity and aging parameters such as threshold voltages and mobility of a three transistor type driver circuit as part of the data extraction system 500 as shown in FIG. 5. The data extraction system 500 includes a drive circuit 502 and a readout circuit 504. The readout circuit 504 is part of the current supply and readout circuit 120 and gathers data from a column of pixels 104 as shown in FIG. 1 and includes a charge pump circuit 506 and a switch-box circuit 508. A voltage source 510 provides the supply voltage (VDD) to the drive circuit 502. The charge-pump and switch-box circuits 506 and 508 are implemented on the top or bottom side of the array 102 such as in the voltage drive 114 and the current supply and readout circuit 120 in FIG. 1. This is achieved by either direct fabrication on the same substrate as for the array 102 or by bonding a microchip on the substrate or a flex as a hybrid solution.

The drive circuit 502 includes a drive transistor 520, an organic light emitting device 522, a drain storage capacitor 524, a source storage capacitor 526 and a select transistor 528. A select line input 530 is coupled to the gate of the select transistor 528. A programming input 532 is coupled through the select transistor 528 to the gate of the drive transistor 220. The select line input 530 is also coupled to the gate of an output transistor 534. The output transistor 534 is coupled to the source of the drive transistor 520 and a voltage monitoring output line 536. The drain of the drive transistor 520 is coupled to the supply voltage source 510 and the source of the drive transistor 520 is coupled to the OLED 522. The source storage capacitor 526 is coupled between the gate and the source of the drive transistor 520. The drain storage capacitor 524 is coupled between the gate and the drain of the drive transistor 520. The OLED 522 has a parasitic capacitance that is modeled as a capacitor 540. The monitor output voltage line 536 also has a parasitic capacitance that is modeled as a capacitor 542. The drive transistor 520 in this example is a thin film transistor that is fabricated from amorphous silicon. A voltage node 544 is the point between the source terminal of the drive transistor 520 and the OLED **522**. In this example, the drive transistor **520** is an n-type transistor. The system 500 may be implemented with a p-type drive transistor in place of the drive transistor

The readout circuit 504 includes the charge-pump circuit 506 and the switch-box circuit 508. The charge-pump circuit 506 includes an amplifier 550 which has a capacitor 552 (C_{int}) in a negative feedback loop. A switch 554 (S4) is utilized to discharge the capacitor 552 C_{int} during the precharge phase. The amplifier 550 has a negative input coupled to the capacitor 552 and the switch 554 and a positive input coupled to a common mode voltage input 558 (VCM). The amplifier 550 has an output 556 that is indicative of various extracted factors of the drive transistor 520 and OLED 522 as will be explained below.

The switch-box circuit **508** includes several switches **560**, **562** and **564** to direct the current to and from the drive circuit **502**. The switch **560** is used during the reset phase to provide the discharge path to ground. The switch **562** provides the supply connection during normal operation of the pixel **104** and also during the integration phase of the readout process. The switch **564** is used to isolate the charge-pump circuit **506** from the supply line voltage source **510**.

In the three transistor drive circuit 502, the readout is normally performed through the monitor line 536. The readout can also be taken through the voltage supply line from the supply voltage source 510 similar to the process of timing signals in FIG. 3A-3C. Accurate timing of the input signals (ϕ_1 - ϕ_4) to the switches 560, 562, 564 and 554, the select input 530 and the programming voltage input 532 (V_{Data}) is used to control the performance of the readout circuit 500. Certain voltage levels are applied to the programming data input 532 (V_{Data}) and the common mode voltage input 558 (VCM) during each phase of readout process.

The three transistor drive circuit **502** may be programmed differentially through the programming voltage input **532** and the monitoring output **536**. Accordingly, the reset and pre-charge phases may be merged together to form a reset/pre-charge phase and which is followed by an integrate phase and a read phase.

FIG. 6A is a timing diagram of the signals involving the 20 extraction of the threshold voltage and mobility of the drive transistor 520 in FIG. 5. The timing diagram includes voltage signals 602-618 for the select input 530, the switches 560, 562, 564 and 554, the programming voltage input 532, the voltage at the gate of the drive transistor **520**, the voltage at the node 544 and the output voltage 556 in FIG. 5. The readout process in FIG. 6A has a pre-charge phase 620, an integrate phase 622 and a read phase 624. The readout process initiates by simultaneous precharging of the drain capacitor 524, the source capacitor 526, and the parasitic capacitors 540 and 542. For this purpose, the select line voltage 602 and the signals 608 and 610 (ϕ_3, ϕ_4) to the switches 564 and 554 are activated as shown in FIG. 6A. The signals 604 and 606 (ϕ_1, ϕ_2) to the switches 560 and 562 $_{35}$ remain low throughout the readout cycle.

The voltage level of the common mode input **558** (VCM) determines the voltage on the output monitor line **536** and hence the voltage at the node **544**. The voltage to the common mode input **558** (VCM $_{TFT}$) should be low enough 40 such that the OLED **522** does not turn on. In the pre-charge phase **620**, the voltage signal **612** to the programming voltage input **532** (V $_{Data}$) is high enough (V $_{RST_TFT}$) to turn the drive transistor **520** on, and also low enough such that the OLED **522** always stays off.

At the beginning of the integrate phase 622, the voltage 602 to the select input 530 is deactivated to allow a charge to be stored on the capacitor 540 (C_{OLED}). The voltage at the node 544 will start to rise and the gate voltage of the drive transistor 520 will follow that with a ratio of the capacitance value of the source capacitor 526 over the capacitance of the source capacitor 526 and the drain capacitor 524 [C_{S1} /(C_{S1} + C_{S2})]. The charging will complete once the difference between the gate voltage of the drive transistor 520 and the voltage at node 544 is equal to the threshold voltage of the drive transistor 520. Before the end of the integration phase 622, the signal 610 (ϕ_4) to the switch 554 is turned off to prepare the charge-pump amplifier 550 for the read phase 624.

For the read phase **624**, the signal **602** to the select input **530** is activated once more. The voltage signal **612** on the programming input **532** (V_{RA_TFT}) is low enough to keep the drive transistor **520** off. The charge stored on the capacitor **240** (C_{OLED}) is now transferred to the capacitor **254** (C_{INT}) and creates an output voltage **618** proportional to the threshold voltage of the drive transistor **520**:

$$V_{out} = -\frac{C_{oled}}{C_{int}}(V_G - V_{th})$$

Before the end of the read phase 624, the signal 608 (ϕ_3) to the switch 564 turns off to isolate the charge-pump circuit 506 from the drive circuit 502.

FIG. 6B is a timing diagram for the input signals for extraction of the turn-on voltage of the OLED 522 in FIG. 5. FIG. 6B includes voltage signals 632-650 for the select input 530, the switches 560, 562, 564 and 554, the programming voltage input 532, the voltage at the gate of the drive transistor 520, the voltage at the node 544, the common mode voltage input 558, and the output voltage 556 in FIG. 5. The readout process in FIG. 6B has a pre-charge phase 652, an integrate phase 654 and a read phase 656. Similar to the readout for the drive transistor 220 in FIG. 6A, the readout process starts with simultaneous precharging of the drain capacitor 524, the source capacitor 526, and the parasitic capacitors 540 and 542 in the pre-charge phase 652. For this purpose, the signal 632 to the select input 530 and the signals 638 and 640 (ϕ_3 , ϕ_4) to the switches 564 and 554 are activated as shown in FIG. 6B. The signals 634 and 636 (ϕ_1, ϕ_2) remain low throughout the readout cycle. The input voltage 648 (VCM_{Pre}) to the common mode voltage input 258 should be high enough such that the OLED 522 is turned on. The voltage 642 $(V_{\textit{Pre}_\textit{OLED}})$ to the programming input 532 (V_{Data}) is low enough to keep the drive transistor 520

At the beginning of the integrate phase 654, the signal 632 to the select input 530 is deactivated to allow a charge to be stored on the capacitor 540 ($\rm C_{\it OLED}$). The voltage at the node 544 will start to fall and the gate voltage of the drive transistor 520 will follow with a ratio of the capacitance value of the source capacitor 526 over the capacitance of the source capacitor 526 and the drain capacitor 524 [$\rm C_{\it ST}/(\rm C_{\it SI}+\rm C_{\it S2})$]. The discharging will complete once the voltage at node 544 reaches the ON voltage ($\rm V_{\it OLED}$) of the OLED 522. Before the end of the integration phase 654, the signal 640 ($\rm \phi_4$) to the switch 554 is turned off to prepare the charge-pump circuit 506 for the read phase 656.

For the read phase 656, the signal 632 to the select input 530 is activated once more. The voltage 642 on the $(V_{R^-}D_-OLED)$ programming input 532 should be low enough to keep the drive transistor 520 off. The charge stored on the capacitor 540 (C_{OLED}) is then transferred to the capacitor 552 (C_{INT}) creating an output voltage 650 at the amplifier output 556 proportional to the ON voltage of the OLED 522.

$$V_{out} = -\frac{C_{oled}}{C_{int}} \cdot V_{ON,oled}$$

55 The signal 638 (ϕ_3) turns off before the end of the read phase 656 to isolate the charge-pump circuit 508 from the drive circuit 502.

As shown, the monitor output transistor 534 provides a direct path for linear integration of the current for the drive transistor 520 or the OLED 522. The readout may be carried out in a pre-charge and integrate cycle. However, FIG. 6C shows timing diagrams for the input signals for an additional final read phase which may be eliminated if the output of charge-pump circuit 508 is sampled at the of the integrate phase. FIG. 6C includes voltage signals 660-674 for the select input 530, the switches 560, 562, 564 and 554, the programming voltage input 532, the voltage at the node 544,

and the output voltage **556** in FIG. **5**. The readout process in FIG. **6**C therefore has a pre-charge phase **676**, an integrate phase **678** and an optional read phase **680**.

The direct integration readout process of the n-type drive transistor **520** in FIG. **5** as shown in FIG. **6**C is initiated by simultaneous precharging of the drain capacitor 524, the source capacitor 526, and the parasitic capacitors 540 and **542**. For this purpose, the signal **660** to the select input **530** and the signals 666 and 668 (ϕ_3 , ϕ_4) to the switches 564 and 554 are activated as shown in FIG. 6C. The signals 662 and **664** (ϕ_1, ϕ_2) to the switches **560** and **562** remain low throughout the readout cycle. The voltage level of the common mode voltage input 558 (VCM) determines the voltage on the monitor output line 536 and hence the voltage at the node 544. The voltage signal (VCM_{TFT}) of the common mode voltage input 558 is low enough such that the OLED **522** does not turn on. The signal **670** ($V_{ON\ TFT}$) to the programming input 532 (V_{Data}) is high enough to turn the drive transistor 520 on.

At the beginning of the integrate phase **678**, the signal **668** (ϕ_4) to the switch **554** is turned off in order to allow the charge-pump amplifier **550** to integrate the current from the drive transistor **520**. The output voltage **674** of the charge-pump amplifier **550** declines at a constant rate which is a function of the threshold voltage, mobility and the gate-to-source voltage of the drive transistor **520**. Before the end of the integrate phase, the signal **666** (ϕ_3) to the switch **564** is turned off to isolate the charge-pump circuit **508** from the drive circuit **502**. Accordingly, the output voltage is given by:

$$V_{out} = -I_{TFT} \cdot \frac{T_{int}}{C_{int}}$$

where I_{TFT} is the drain current of drive transistor **520** which is a function of the mobility and $(V_{Data}-V_{CM}-V_{th})$. T_{int} is the length of the integration time. The output voltage **674**, which is a function of the mobility and threshold voltage of 40 the drive transistor **520**, may be sampled any time during the read phase **680**.

FIG. 6D shows a timing diagram of input signals for the direct reading of the on (threshold) voltage of the OLED 522 in FIG. 5. FIG. 6D includes voltage signals 682-696 for the 45 select input 530, the switches 560, 562, 564 and 554, the programming voltage input 532, the voltage at the node 544, and the output voltage 556 in FIG. 5. The readout process in FIG. 6C has a pre-charge phase 697, an integrate phase 698 and an optional read phase 699.

The readout process in FIG. 6D is initiated by simultaneous precharging of the drain capacitor **524**, the source capacitor **526**, and the parasitic capacitors **540** and **542**. For this purpose, the signal **682** to the select input **530** and the signals **688** and **690** (ϕ_3 , ϕ_4) to the switches **564** and **554** are 55 activated as shown in FIG. 6D. The signals **684** and **686** (ϕ_1 , ϕ_2) remain low throughout the readout cycle. The voltage level of the common mode voltage input **558** (VCM) determines the voltage on the monitor output line **536** and hence the voltage at the node **544**. The voltage signal (VCM_{OLED}) 60 of the common mode voltage input **558** is high enough such to turn the OLED **522** on. The signal **692** (V_{OFF_TFT}) of the programming input **532** (V_{Data}) is low enough to keep the drive transistor **520** off.

At the beginning of the integrate phase **698**, the signal **690** $_{65}$ (ϕ_4) to the switch **552** is turned off in order to allow the charge-pump amplifier **550** to integrate the current from the

18

OLED **522**. The output voltage **696** of the charge-pump amplifier **550** will incline at a constant rate which is a function of the threshold voltage and the voltage across the OLED **522**.

Before the end of the integrate phase 698, the signal 668 (ϕ_3) to the switch 564 is turned off to isolate the charge-pump circuit 508 from the drive circuit 502. Accordingly, the output voltage is given by:

$$V_{out} = I_{OLED} \cdot \frac{T_{int}}{C_{int}}$$

15 where I_{OLED} is the OLED current which is a function of (V_{CM}-V_{th}), and T_{int} is the length of the integration time. The output voltage, which is a function of the threshold voltage of the OLED **522**, may be sampled any time during the read phase **699**.

The controller 112 in FIG. 1 may be conveniently implemented using one or more general purpose computer systems, microprocessors, digital signal processors, microcontrollers, application specific integrated circuits (ASIC), programmable logic devices (PLD), field programmable logic devices (FPLD), field programmable gate arrays (FPGA) and the like, programmed according to the teachings as described and illustrated herein, as will be appreciated by those skilled in the computer, software and networking arts.

In addition, two or more computing systems or devices may be substituted for any one of the controllers described herein. Accordingly, principles and advantages of distributed processing, such as redundancy, replication, and the like, also can be implemented, as desired, to increase the robustness and performance of controllers described herein. The controllers may also be implemented on a computer system or systems that extend across any network environment using any suitable interface mechanisms and communications technologies including, for example telecommunications in any suitable form (e.g., voice, modem, and the like), Public Switched Telephone Network (PSTNs), Packet Data Networks (PDNs), the Internet, intranets, a combination thereof, and the like.

The operation of the example data extraction process, will now be described with reference to the flow diagram shown in FIG. 7. The flow diagram in FIG. 7 is representative of example machine readable instructions for determining the threshold voltages and mobility of a simple driver circuit that allows maximum aperture for a pixel 104 in FIG. 1. In this example, the machine readable instructions comprise an algorithm for execution by: (a) a processor, (b) a controller, and/or (c) one or more other suitable processing device(s). The algorithm may be embodied in software stored on tangible media such as, for example, a flash memory, a CD-ROM, a floppy disk, a hard drive, a digital video (versatile) disk (DVD), or other memory devices, but persons of ordinary skill in the art will readily appreciate that the entire algorithm and/or parts thereof could alternatively be executed by a device other than a processor and/or embodied in firmware or dedicated hardware in a well known manner (e.g., it may be implemented by an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable logic device (FPLD), a field programmable gate array (FPGA), discrete logic, etc.). For example, any or all of the components of the extraction sequence could be implemented by software, hardware, and/or firmware. Also, some or all of the machine

readable instructions represented by the flowchart of FIG. 7 may be implemented manually. Further, although the example algorithm is described with reference to the flowchart illustrated in FIG. 7, persons of ordinary skill in the art will readily appreciate that many other methods of imple- 5 menting the example machine readable instructions may alternatively be used. For example, the order of execution of the blocks may be changed, and/or some of the blocks described may be changed, eliminated, or combined.

A pixel 104 under study is selected by turning the corresponding select and programming lines on (700). Once the pixel 104 is selected, the readout is performed in four phases. The readout process begins by first discharging the parasitic capacitance across the OLED (Coled) in the reset phase (702). Next, the drive transistor is turned on for a 15 certain amount of time which allows some charge to be accumulated on the capacitance across the OLED C_{oled} (704). In the integrate phase, the select transistor is turned off to isolate the charge on the capacitance across the OLED C_{oled} and then the line parasitic capacitance (C_P) is pre- 20 charged to a known voltage level (706). Finally, the drive transistor is turned on again to allow the charge on the capacitance across the OLED C_{oled} to be transferred to the charge-pump amplifier output in a read phase (708). The amplifier's output represent a quantity which is a function of 25 device (OLED) based display, the system comprising: mobility and threshold voltage. The readout process is completed by deselecting the pixel to prevent interference while other pixels are being calibrated (710).

FIG. 8 is a flow diagram of different extraction cycles and parameter applications for pixel circuits such as the two 30 transistor circuit in FIG. 2 and the three transistor circuit in FIG. 5. One process is an in-pixel integration that involves charge transfer (800). A charge relevant to the parameter of interest is accumulated in the internal capacitance of the pixel (802). The charge is then transferred to the external 35 read-out circuit such as the charge-pump or integrator to establish a proportional voltage (804). Another process is an off-pixel integration or direct integration (810). The device current is directly integrated by the external read-out circuit such as the charge-pump or integrator circuit (812).

In both processes, the generated voltage is post-processed to resolve the parameter of interest such as threshold voltage or mobility of the drive transistor or the turn-on voltage of the OLED (820). The extracted parameters may be then used for various applications (822). Examples of using the param- 45 eters include modifying the programming data according to the extracted parameters to compensate for pixel variations (824). Another example is to pre-age the panel of pixels (826). Another example is to evaluate the process yield of the panel of pixels after fabrication (828).

FIG. 9 is a block diagram and chart of the components of a data extraction system that includes a pixel circuit 900, a switch box 902 and a readout circuit 904 that may be a charge pump/integrator. The building components (910) of the pixel circuit 900 include an emission device such as an 55 device (OLED) based display, the system comprising: OLED, a drive device such as a drive transistor, a storage device such as a capacitor and access switches such as a select switch. The building components 912 of the switch box 902 include a set of electronic switches that may be controlled by external control signals. The building components 914 of the readout circuit 904 include an amplifier, a capacitor and a reset switch.

The parameters of interest may be stored as represented by the box 920. The parameters of interest in this example may include the threshold voltage of the drive transistor, the 65 mobility of the drive transistor and the turn-on voltage of the OLED. The functions of the switch box 902 are represented

20

by the box 922. The functions include steering current in and out of the pixel circuit 900, providing a discharge path between the pixel circuit 900 and the charge-pump of the readout circuit 904 and isolating the charge-pump of the readout circuit 904 from the pixel circuit 900. The functions of the readout circuit 904 are represented by the box 924. One function includes transferring a charge from the internal capacitance of the pixel circuit 900 to the capacitor of the readout circuit 904 to generate a voltage proportional to that charge in the case of in-pixel integration as in steps 800-804 in FIG. 8. Another function includes integrating the current of the drive transistor or the OLED of the pixel circuit 900 over a certain time in order to generate a voltage proportional to the current as in steps 810-814 of FIG. 8.

While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations can be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.

What is claimed is:

- 1. A data extraction system for an organic light emitting
 - a pixel circuit including an OLED, a drive transistor to provide a programmable drive current to the OLED, a programming input to receive a programming signal, and a storage device to store the programming signal;
 - a readout circuit including an input and including an output for providing an output voltage value;
 - a switch module including an input coupled to an output of the pixel circuit and including an output coupled to the input of the readout circuit; and
 - a controller coupled to the pixel circuit, the readout circuit, and the switch module, the controller operable to control input signals to the pixel circuit, readout circuit, and switch module in a predetermined sequence including a program voltage provided to the programming input to control the pixel circuit to provide a signal output to the input of the readout circuit via the switch module to produce the output voltage value such that it is a function of at least one parameter of the pixel circuit,
- wherein the controller is operable to control the program voltage provided to the programming input and to control the input signals, to pre-charge an internal capacitance of the pixel circuit generating a stored charge in the internal capacitance, and to transfer at least a portion of the stored charge to the readout circuit via the switch module, the transferred charge a function of the at least one parameter of the pixel circuit and the output voltage value a function of the transferred charge.
- 2. A data extraction system for an organic light emitting
 - a pixel circuit including an OLED, a drive transistor to provide a programmable drive current to the OLED, a programming input to receive a programming signal, and a storage device to store the programming signal;
 - a readout circuit including an input and including an output for providing an output voltage value;
 - a switch module including an input coupled to an output of the pixel circuit and including an output coupled to the input of the readout circuit; and
 - a controller coupled to the pixel circuit, the readout circuit, and the switch module, the controller operable to control input signals to the pixel circuit, readout

circuit, and switch module in a predetermined sequence including a program voltage provided to the programming input to control the pixel circuit to provide a signal output to the input of the readout circuit via the switch module to produce the output voltage value such that it is a function of at least one parameter of the pixel circuit.

wherein the controller is operable to control the program voltage provided to the programming input and to control the input signals, to provide a current from the pixel circuit 10 to the readout circuit via the switch module to produce the output voltage value by integration over a certain period of time, the current a function of the at least one parameter of the pixel circuit, and the output voltage value a function of a capacitance of the readout circuit and the integration time. 15

- 3. The system of claim 1, wherein the program voltage provided to the programming input comprises a programming sequence to produce the output voltage value such that it is a function of the at least one parameter of the pixel circuit.
- 4. The system of claim 1, wherein the controller is operable to control the program voltage provided to the programming input and to control the input signals, to allow the stored charge of the internal capacitance to discharge through the switch module to the readout circuit until the 25 gate-to-source drive-voltage of the drive transistor is equal to the threshold voltage of the drive transistor, and wherein the at least one parameter comprises the threshold voltage of the drive transistor, the internal capacitance of the pixel is pre-charged to a level that does not turn the OLED on, and 30 the output voltage value is a function of the threshold voltage, a feedback capacitance of the readout circuit, the OLED capacitance, and the program voltage.
- 5. The system of claim 1, wherein the controller is operable to control the program voltage provided to the 35 programming input and to control the input signals, to allow the stored charge of the internal capacitance to partially discharge through the switch module to the readout circuit over an integration time shorter than a substantially complete discharge time for the stored charge, and wherein the 40 at least one parameter comprises the mobility of the drive transistor, the internal capacitance of the pixel is pre-charged to a level that does not turn the OLED on, and the output voltage value is a function of the mobility of the drive transistor, integration time, a feedback capacitance of the 45 readout circuit, and the program voltage.
- 6. The system of claim 1, wherein the internal capacitance is the OLED capacitance, and wherein the controller is operable to control the program voltage provided to the programming input and to control the input signals, to 50 discharge the charge on the OLED capacitance through the OLED until it reaches the turn-on voltage of the OLED and transfer the remaining charge on the OLED capacitance through the switch module to the readout circuit, and wherein the at least one parameter comprises the turn-on 55 voltage of the OLED, the OLED capacitance is pre-charged to a level higher than the turn-on voltage of the OLED, and the output voltage value is a function of the turn-on voltage of the OLED, a capacitance in the readout circuit, and the OLED capacitance.
- 7. The system of claim 2, wherein the controller is operable to control the program voltage provided to the programming input and to control the input signals, to set the program voltage to a proper level to turn the drive transistor on and steer the current of the drive transistor through the 65 switch module into the readout circuit to be directly integrated for a certain amount of time, and wherein the at least

22

one parameter comprises the threshold voltage and mobility of the drive transistor and the output voltage value is a function of the threshold voltage and mobility and the program voltage.

- 8. The system of claim 2, wherein the controller is operable to control the program voltage provided to the programming input and to control the input signals, to set the program voltage to a proper level to operate the drive transistor as a switch and steer the current of the OLED through the switch module into the readout circuit to be directly integrated for a certain amount of time, and wherein the at least one parameter comprises the turn-on voltage of the OLED and the output voltage value is a function of the turn-on voltage of the OLED.
- 9. A method of extracting data from a pixel circuit of an organic light emitting device (OLED) based display, the pixel circuit including an OLED, a drive transistor to provide a programmable drive current to the OLED, a programming input to receive a programming signal, and a storage device to store the programming signal, the method comprising:
 - controlling input signals to the pixel circuit, a readout circuit, and a switch module, an output of the pixel circuit coupled to an input of the switch module, an output of the switch module coupled to an input of the readout circuit; and
 - providing a program voltage to the programming input to control the pixel circuit to provide a signal output to the input of the readout circuit via the switch module to produce an output voltage value from an output of the readout circuit.

the input signals including the program voltage and comprising a predetermined sequence to produce the output voltage value such that it is a function of at least one parameter of the pixel circuit,

wherein the program voltage is provided to the programming input and the input signals are controlled to pre-charge an internal capacitance of the pixel circuit generating a stored charge in the internal capacitance, and to transfer at least a portion of the stored charge to the readout circuit via the switch module, the transferred charge a function of the at least one parameter of the pixel circuit and the output voltage value a function of the transferred charge.

- 10. A method of extracting data from a pixel circuit of an organic light emitting device (OLED) based display, the pixel circuit including an OLED, a drive transistor to provide a programmable drive current to the OLED, a programming input to receive a programming signal, and a storage device to store the programming signal, the method comprising:
 - controlling input signals to the pixel circuit, a readout circuit, and a switch module, an output of the pixel circuit coupled to an input of the switch module, an output of the switch module coupled to an input of the readout circuit; and
 - providing a program voltage to the programming input to control the pixel circuit to provide a signal output to the input of the readout circuit via the switch module to produce an output voltage value from an output of the readout circuit.

the input signals including the program voltage and comprising a predetermined sequence to produce the output voltage value such that it is a function of at least one parameter of the pixel circuit,

wherein the program voltage is provided to the programming input and the input signals are controlled to provide a current from the pixel circuit to the readout circuit via the

switch module to produce the output voltage value by integration over a certain period of time, the current a function of the at least one parameter of the pixel circuit, and the output voltage value a function of a capacitance of the readout circuit and the integration time.

- 11. The method of claim 9, wherein the program voltage provided to the programming input comprises a programming sequence to produce the output voltage value such that it is a function of the at least one parameter of the pixel circuit
 - 12. The method of claim 9, further comprising:

allowing the stored charge of the internal capacitance to discharge through the switch module to the readout circuit until the gate-to-source drive-voltage of the drive transistor is equal to the threshold voltage of the drive transistor,

wherein the at least one parameter comprises the threshold voltage of the drive transistor, the internal capacitance of the pixel is pre-charged to a level that does not turn the OLED on, and the output voltage value is a function of the threshold voltage, a feedback capacitance of the readout circuit, the OLED capacitance, and the program voltage.

13. The method of claim 9, further comprising:

allowing the stored charge of the internal capacitance to partially discharge through the switch module to the ²⁵ readout circuit over an integration time shorter than a substantially complete discharge time for the stored charge.

wherein the at least one parameter comprises the mobility of the drive transistor, the internal capacitance of the pixel is pre-charged to a level that does not turn the OLED on, and the output voltage value is a function of the mobility of the drive transistor, integration time, a feedback capacitance of the readout circuit, and the program voltage. 24

14. The method of claim 9, wherein the internal capacitance is the OLED capacitance, the method further comprising:

discharging the charge on the OLED capacitance through the OLED until it reaches the turn-on voltage of the OLED; and

transferring the remaining charge on the OLED capacitance through the switch module to the readout circuit, wherein the at least one parameter comprises the turn-on voltage of the OLED, the OLED capacitance is pre-charged to a level higher than the turn-on voltage of the OLED, and the output voltage value is a function of the turn-on voltage of the OLED, a capacitance in the readout circuit, and the OLED capacitance.

15. The method of claim 10, further comprising: setting the program voltage to a proper level to turn the drive transistor on; and

steering the current of the drive transistor through the switch module into the readout circuit to be directly integrated for a certain amount of time,

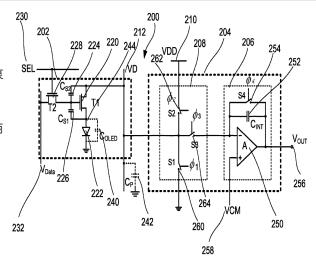
wherein the at least one parameter comprises the threshold voltage and mobility of the drive transistor and the output voltage value is a function of the threshold voltage and mobility and the program voltage.

16. The method of claim 10, further comprising:

setting the program voltage to a proper level to operate the drive transistor as a switch: and

steering the current of the OLED through the switch module into the readout circuit to be directly integrated for a certain amount of time,

wherein the at least one parameter comprises the turn-on voltage of the OLED and the output voltage value is a function of the turn on voltage of the OLED.


* * * * *

专利名称(译)	用于提取AMOLED显示器中的阈值和迁移率参数的系统和方法					
公开(公告)号	<u>US10580337</u>	公开(公告)日	2020-03-03			
申请号	US16/175906	申请日	2018-10-31			
[标]申请(专利权)人(译)	伊格尼斯创新公司					
申请(专利权)人(译)	IGNIS创新INC.					
当前申请(专利权)人(译)	IGNIS创新INC.					
[标]发明人	CHAJI GHOLAMREZA AZIZI YASER					
发明人	CHAJI, GHOLAMREZA AZIZI, YASER					
IPC分类号	G09G3/00 G09G3/3266 G01R19/00 G09G3/3233 H03F3/217 G09G3/3291 G09G3/3258					
CPC分类号	H03F3/2171 G09G3/3258 G09G3 G09G2310/0251 G09G2320/0233 G09G2310/08 G09G2300/0465 G G09G2310/0291 G09G2320/0295	3 G09G2320/045 G09G2300/04 609G2320/043 G09G2300/0842	3 G09G2300/0819 G09G2330/028			
优先权	15/420503 2017-10-24 US 15/154445 2017-03-07 US					
其他公开文献	US20190066557A1					
外部链接	Espacenet					

摘要(译)

一种改善AMOLED显示器中晶体管和OLED参数提取的系统,包括:具有有机发光装置的像素电路,向发光装置提供可编程驱动电流的驱动装置,提供编程信号的编程输入,存储设备,用于存储编程信号。 电荷泵放大器具有电流输入和电压输出。 电荷泵放大器包括负反馈配置的运算放大器。 反馈由连接在运算放大器的输出和反相输入之间的电容器提供。 共模电压源驱动运算放大器的同相输入。 电子开关跨接在电容器两端,以重置电容器。 包括输入的开关模块耦合到像素电路的输出,并且输出耦合到电荷泵放大器的输入。

